
A	Fast	Track	to	Relativity	
	
	
In	this	paper	we	derive	all	of	the	results	of	the	Special	Theory	of	Relativity	(STR)	using	a	novel	approach.	This	approach,	
which	we	call	"Fast	Track	to	STR"	is	concise	and	exact.	It	starts	with	time	dilation	and	Doppler	effect,	then	derives	the	
addition	of	velocities	formula	and	introcuces	the	"half	speed"	in	STR.	Equipped	with	that	we	derive	the	STR	
formulations	of	conservation	of	mass	and	conservation	of	momentum,	which	in	turn	allow	us	to	calculate	the	
relativistic	expression	of	kinetic	energy.	All	this	is	done	on	the	first	6	pages.		
In	sections	7	to	19	we	draw	some	important	conclusions,	show	some	old	and	a	new	proofs	of	the	most	popular	formula	
of	physics	and	give	alternative	ways	to	derive	the	basic	results	of	STR.	
In	section	20	we	introduce,	'post	festum',	the	Lorentz	transformations	in	order	to	derive	the	seldom	used	general	
formulas	for	the	addition	of	velocities,	aberration	and	Doppler	shift.	The	last	sections	pay	homage	to	Newton	and	give	a	
short	discussion	of	the	logical	background	of	STR.	
	
Several	links	to	the	online	edition	of	my	book	"Epstein	Explains	Einstein"	(EEE	for	short)	lead	to	specific	illustrations	and	
examples.	What	is	missing	are	the	relevant	transformations	of	the	electric	and	magnetic	field.	For	this	consult	e.g.	
https://www.relativity.li/en/maxwell2/max_00_en								or					
https://www.physastromath.ch/uploads/myPdfs/Relativ/STR	with	Four-Vectors.pdf	
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1.		Time	Dilation	and	Doppler	Shift	
	
	
In	the	realm	of	acoustics	two	particular	situations	are	distinguished:	
	
a)		 The	sender	is	at	rest	in	the	wave-propagating	medium,	the	receiver	is	moving	away	with	speed		𝑣		from	the	sender.
	 The	corresponding	Doppler-formula	is	

																																𝑓& 	= 	 𝑓( ·
𝑐 − 𝑣
𝑐

	

	
b)	 The	receiver	is	at	rest	in	the	wave-propagating	medium,	the	sender	is	moving	away	with	speed		𝑣		from	the	receiver.	
						The	corresponding	Doppler-formula	is	

																														𝑓& 	= 	 𝑓( ·
𝑐

𝑐 + 𝑣
	

	
In	STR,	the	basic	assumptions	are	that	the	speed	of	light		𝑐		is	the	same	in	all	inertial	frames,	and,	furthermore,	that	this	
speed	is	independent	of	the	movement	of	the	sender.	These	basic	assumptions	are	just	what	Maxwell's	equations	for	
electro-magnetic	waves	imply.	Unlike	sound	waves	there	is	no	special	coordinate	system	for	light	waves	in	which	the	
medium	for	the	wave	propagation	is	at	rest.	There	is	no	need	for	something	like	the	'Ether'.		
	
Since	there	is	no	distinguished	coordinate	frame	only	relative	speeds	can	be	measured.	Then	both	of	the	above	
situations	should	yield	the	same	amount	of	Doppler	shift.	So	something	has	to	happen	to	frequencies	if	the	sender	and	
the	receiver	are	moving	relative	to	each	other.	If	frequencies	are	influenced	by	movement	time	itself	must	be	influenced	
by	movement	!	Time	is	the	only	quantity	involved	in	the	counting	of	the	number	of	oscillations	when	the	speed	of	wave	
propagation	has	a	fixed	value.	This	means	that	the	flow	of	time	does	not	have	the	same	speed	in	coordinate	frames	
moving	relative	to	each	other	and	we	have	to	say	goodbye	to	Newton's	idea	of	absolute	time	!		
	
Let	us	assume	the	existence	of	a	function	𝑟(𝑣)	depending	on	relative	speed	𝑣		so	that	the	following	equation	holds	
	

∆𝑡1 	= 	∆𝑡2 · 𝑟(𝑣)	
	
∆𝑡1		is	a	time	interval	measured	in	the	moving	system,	and	∆𝑡2	is	the	corresponding	time	interval	measured	at	rest.		
𝑟(𝑣)	cannot	equal		1		for		𝑣 ≠ 0	,	formulas	(1.1)	and	(1.2)	are	different.		
	
We	do	not	impose	any	restrictions	on	the	function	𝑟(𝑣)	.	Let	us	assume	𝑟(𝑣)	to	be	smaller		than	1	for	𝑣 ≠ 0		(the	text	
could	also	be	formulated	for	the	other	case	without	changing	the	outcome).	
	
In	case	a)		the	receiver	is	moving,	so	his	watch	runs	slower	by	the	factor	𝑟(𝑣).	Therefore	he	will	measure	a	higher	
frequency,	in	his	longer	seconds	he	will	count	more	oscillations.	(1.1)	has	to	be	adjusted	to	
	

𝑓& 	= 	 𝑓( ·
𝑐 − 𝑣
𝑐

·
1

𝑟(𝑣)
	

	
In	case	b)		the	receiver	is	at	rest,	and	the	clock	of	the	fast-moving	sender	runs	slow.	Hence	the	frequency	of	the	sender	
is	diminuished	and	the	receiver	measures	a	lower	frequency.		(1.2)	has	to	be	adjusted	to	
	

𝑓& 	= 	 𝑓( ·
𝑐

𝑐 + 𝑣
· 𝑟(𝑣)	

	
In	STR	both	of	the	above	formulas	should	yield	the	same	amount	of	Doppler	shift.	Therefore	we	get		
	

𝑐 − 𝑣
𝑐

·
1

𝑟(𝑣)
		= 		

𝑐
𝑐 + 𝑣

· 𝑟(𝑣)	

	
or	

𝑟(𝑣)" 	= 	
𝑐	– 𝑣
𝑐

·
𝑐 + 𝑣
𝑐

	= 	
𝑐"	–	𝑣"

𝑐"
		= 	1	–	

𝑣"

𝑐"
			

(1.1)	

(1.2)	



	
The	factor	𝑟(𝑣)	turns	out	to	be		

																	𝒓(𝒗) = 		 𝟏 − 	
𝒗𝟐

𝒄𝟐
	

	
	
The	negative	solution	might	be	interesting	for	a	science-fiction-story	...	
	
Replacing		𝑟(𝑣)		by	(1.3)	we	get	the	correct	Doppler	shift	formula	in	this	special	situation	of	relative	speed	along	the	line	
of	sight	between	receiver	and	emitter.	The	longitudinal	Doppler	shift		is	controlled	by	the	formula	
		

𝒇𝑹 	= 	 𝑓( ·
𝑐

𝑐	 + 	𝑣
· 𝑟(𝑣) = 	 𝑓( ·

𝑐
𝑐	 + 	𝑣

·
𝑐	– 𝑣 · 𝑐 + 𝑣

𝑐"
	 	= 	 𝒇𝑺 ·

(𝒄	– 	𝒗)
(𝒄 + 𝒗)

		

	

𝒇𝑹 	= 	 𝑓( ·
𝑐	 − 	𝑣
𝑐

·
1

𝑟(𝑣)
= 	 𝑓( ·

𝑐	 − 	𝑣
𝑐

·
𝑐"

𝑐	– 𝑣 · 𝑐 + 𝑣
	 	= 	 𝒇𝑺 ·

(𝒄	– 	𝒗)
(𝒄 + 𝒗)

		

	
with		𝑣		denoting	the	speed	of	increasing	distance	of	sender	and	receiver.	In	both	cases	we	come	to	the	same	result.	
	
The	principle	of	relativity,	denying	the	existence	of	a	unique	ether	system,	yields	immediately	the	formulas	of	time	
dilation	and	longitudinal	Doppler	shift.		
	
Graphic	representations	of	the	three	Doppler	formulas	and	a	beautiful	application	of	the	longitudinal	Doppler	shift	are	
presented	in		https://www.relativity.li/en/epstein2/read/d0_en/d6_en	.	In	that	publication	the	sign	of	relative	speed	𝑣	
is	positive	if	sender	and	receiver	are	approaching	each	other	and	thus	the	plus	and	minus	signs	are	reversed.	
	
	
Now,	consider	a	sender	moving	at	right	angle	to	the	line	of	sight	between	sender	and	receiver.	Actually	there	is	no	
change	of	distance	between	sender	and	receiver,	but	the	senders	frequency	as	seen	by	the	receiver	is	lowered		because	
of	time	dilation.	Therefore	we	have	
	

														𝒇𝑹 	= 	 𝒇𝑺 · 𝟏	–	
𝒗𝟐

𝒄𝟐
			

	
This	effect	is	called	transversal	Doppler	shift.	It	is	a	purely	relativistic	effect	unknown	in	'classical'	physics.	It	is	much	
harder	to	demonstrate	the	transversal	Doppler	shift	by	experiments	than	the	longitudinal	Doppler	shift,	because	the	
effect		depends	on	the	square	of	the	small	number		𝑣/𝑐		and	not	on	𝑣/𝑐	itself.	
	
Formulas	for	the	general	case	of	Doppler	shift	are	presented	in	section	23.	
	
	 	

(1.3)	

(1.4)	

(1.5
)	

(1.6)	



2.		Addition	of	Parallel	Velocities	
	
	
We	can	use	the	formula	of	longitudinal	Doppler	shift	to	derive	the	STR	formula	for	the	addition	of	parallel	velocities.	The	
idea	comes	from	Hermann	Bondi	("Relativity	and	Common	Sense",	1962,	new	edition	by	Dover	Publications	1980)	and	is	
also	presented	by	David	Mermin	in	"It's	About	Time"	(Princeton	University	Press	2005).	
	
Let	B	be	moving	in	positive		xA-direction	of	A	with	velocity	𝑣	as	measured	by	A,	and	let	C	be	moving	in	positive		xB-
direction	of	B	with	velocity		𝑢	as	measured	by	B.	As	usual	both	x-directions	should	merge	into	one.	Now	let	C	emit	
radiation	of	frequency		fC		directed	to	B	and	A.	Following	(1.4)	B	is	receiving	that	radiation	at	a	frequency	of	
	

𝑓A 	= 	
(𝑐	– 	𝑢
(𝑐 + 𝑢

	 · 𝑓B 	

	
The	radiation	passes	B	with	frequency		𝑓A		and,	somewhat	later,	reaches	A	who	will	measure	the	frequency	
	

𝑓C 	= 	
(𝑐	– 	𝑣
(𝑐 + 𝑣

	 · 𝑓A 	=
(𝑐	– 	𝑣
(𝑐 + 𝑣

	 ·
(𝑐	– 	𝑢
(𝑐 + 𝑢

	 · 𝑓B		

	
Let		𝑧		be	the	yet	unknown	velocity	of	C	as	measured	by	A	.	(1.4)	tells	us	
	

𝑓C 	= 	
(𝑐	– 	𝑧
(𝑐 + 𝑧

	 · 𝑓B 	

	
Comparing	both	terms	for		𝑓C		and	solving	for	𝑧		we	get	
	

																						𝒛	 = 	
𝒗	 + 	𝒖

𝟏	 + 	𝒗 · 𝒖𝒄𝟐
	

	
If	both		𝑣		and		𝑢		are	small	compared	with		𝑐	,	then	(2.1)	hardly	differs	from		𝑧 = 𝑣 + 𝑢	,	the	result	of	the	'classical'	
addition	of	parallel	velocities	following	Galileo	and	Newton.		
Inserting		𝑐		for		𝑢		or		𝑣		(or	for	both	of	them	!)	results	in		𝑧 = 𝑐	.	Obviously,	the	basic	assumptions	of	STR	do	not	lead	to	
self-contradictions	!		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

(2.1)	



3.		'Half	the	Speed'	and	'Twice	the	Speed'	in	STR	
	
	
Now	let	us	ask	for	the	speed		𝑤		that,	if	added	to	itself	according	to	(2.1),	yields	a	given	speed		𝑣	:	
	

𝑣	 = 	
𝑤	 + 	𝑤

1	 + 	𝑤 · 𝑤
𝑐"

	

	
We	shall	call		𝑤		'half	the	speed'	of		𝑣		in	STR,	and		𝑣		is	called	'twice	the	speed'	of		𝑤.	Solving	for		𝑤		we	get		
	

																									𝒘	 = 	
𝒗

𝟏 + 𝟏	 − 	𝒗
𝟐

𝒄𝟐

	

	
If		𝑣		is	small	compared	with	𝑐		the	root	term	comes	close	to	1	and	hence		𝑤		comes	close	to		𝑣	/	2	,	the	'classical'	
answer.	The	root	term	is	always	smaller	than	1	,	so		w		is	always	somewhat	greater	as		𝑣	/	2	.	As		𝑣		approaches	the	
speed	of	light		𝑤		approaches	the	value		𝑣		!	
	
Jerzy	Kocik	shows	in	the	American	Journal	of	Physics	(Vol.	80,	Nr.	8,	p.	737f)	how	to	add	velocities	in	STR	with	ruler	and	
compass.	Triggered	by	his	publication	my	friend		Alfred	Hepp	and	me	have	worked	out	a	small	paper	promoting	the	
usage	of	'half	the	speed'	in	STR:		https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_06_en.pdf	
	
We	will	use	this	idea	of	'half	the	speed'	in	the	next	section	to	derive	the	STR	terms	for	'dynamic	mass'	and	'momentum'.	
Equation	(3.1)	will	help	to	avoid	some	annoying	algebra.	And	in	section	8	we	will	derive	a	new	result	from	(3.1):		
Multiplying	the	STR	term	of	momentum	by	half	the	speed	you	get	the	STR	term	of	kinetic	energy	!	
	
Speed		𝑤	creates	a	third	point	of	view	in	all	situations	where	we	have	two	inertial	frames	S	and	S'	with	relative	speed	𝑣	.	
If	the	inertial	frame	T	is	moving	with	speed	𝑤	relative	to	S,	the	constellation	is	completely	symmetric	as	observed	from	
the	system	T	:	System	S	is	moving	to	the	left	with	speed		–	𝑤		while	System	S'	is	moving	to	the	right	with	speed		𝑤	.	
	 	

(3.1)	



4.		The	Perfectly	Inelastic	Collision	
	
	
In	coordinate	frame	S	let	two	identical	bodies	move	in	a	perfectly	symmetric	way	towards	each	other.	We	allow	their	
identical	masses	to	depend	on	their	velocities,	but	they	do	not	have	to	do	so.	Their	momenta	are	given	by	
	

𝑚J ∙ 𝑤										and										𝑚J ∙ (−𝑤)	
	
Total	momentum	is	zero.	So,	after	the	perfectly	inelastic	collision,	we	have	a	single	mass		M0		at	rest	in	frame	S	.	
	
Now	let	us	observe	this	collision	in	a	frame	S'	moving	with	speed		–	𝑤		as	seen	from	S	.	In	S'		the	second	body	is	at	rest	
while	the	first	moves	with	'twice	the	speed'	𝑣	.	After	the	collision	the	single	mass		𝑀J		moves	with	speed		𝑤		in	S'.	
Conservation	of	momentum	and	conservation	of	mass	are	the	core	credos	of	physics.	The	corresponding	equations	for	
the	collision	as	observed	in	frame	S'	are		
	

I																𝑚1 ∙ 𝑣		 = 		𝑀J 	 ∙ 	𝑤	
	

II																	𝑚1 	+ 	𝑚2 		= 		𝑀J	
	
Substituting		Mw		in	the	first	equation	by	using	the	second	and	replacing		𝑤		according	to	(3.1)	we	get		
	

𝑚1 ∙ 𝑣		 = 		 (		𝑚1 	+ 	𝑚2	) 	 ∙ 	𝑤		 = 		 (		𝑚1 	+ 	𝑚2	) 	 ∙ 		
𝑣

1 + 1	–	𝑣
"

𝑐"

			

	
Dividing	by		𝑣		we	find	the	definition	of	'dynamic	mass'	:	
	

𝒎𝒗 	= 		
𝒎𝟎

𝟏	–	𝒗
𝟐

𝒄𝟐	
	

	
Hence,	relativistic	momentum	is	given	by	
	
	

𝒑	 = 	𝒎𝒗 ∙ 𝒗		 = 			
𝒎𝟎 ∙ 𝒗

𝟏	–	𝒗
𝟐

𝒄𝟐	
	

	
	
Only	these	definitions	make	equations	I	and	II	come	true	!	Conservation	of	mass	only	holds	for	'dynamic	masses',	and	
the	definition	of	momentum	needs	an	additional	relativistic	twist.	
	
𝑤 = 𝑣/2		would	imply		𝑚1 = 𝑚2		and		𝑀J = 𝑀2 	= 	2 · 𝑚2	.	The	'slight'	correction	(2.1)	brings	to	the	formula	for	the	
addition	of	velocities	has	a	deep	impact	!	
	
This	derivation	is	presented	by	Max	Born	in	his	influential	book	"Die	Relativitätstheorie	Einsteins"	(first	edition	1920).		
The	above	presentation	is	much	simpler	thanks	to	the	'half	speed'	formula	(3.1).	
The	content	of	sections	11	and	18	can	be	found	in	Born's	book	as	well.	In	section	18	we	will	present	his	derivation	of	
relativistic	momentum	that	is	independent	of	conservation	of	mass	and	of	conservation	of	momentum	!	
	
	
	 	

(4.1)	

(4.2)	



5.		Total	Energy,	Kinetic	Energy	and	Rest	Energy		
	
	
We	follow	the	standard	path	to	calculate	the	relativistic	expression	for	kinetic	energy;	that	is	we	are	going	to	calculate	
the	work	needed	to	accelerate	a	body	from	𝑣2 = 0		to	the	final	velocity		vend	.	With	
			

				𝑑𝐸	 = 	𝐹 ∙ 	𝑑𝑠																	and																𝐹	 = 	
𝑑𝑝
𝑑𝑡
										(		Newton′s	second	law	)		

	
we	get	
	

𝑑𝐸	 = 	
𝑑𝑝
𝑑𝑡
	 ∙ 	𝑑𝑠		 = 		

𝑑𝑝
𝑑𝑣
	 ∙
𝑑𝑣
𝑑𝑡
	 ∙ 𝑑𝑠	 = 	

𝑑𝑝
𝑑𝑣
	 ∙
𝑑𝑠
𝑑𝑡
	 ∙ 𝑑𝑣	 = 		

𝑑𝑝
𝑑𝑣
	 ∙ 𝑣 · 𝑑𝑣	

	
	
and	hence	

𝐸cde 	= 	
𝑑𝑝
𝑑𝑣
	 ∙ 𝑣 · 𝑑𝑣

1fgh

2
	

	
From	formula	(4.2)	of	the	last	section	we	find	

																												
𝒅𝒑
𝒅𝒗

		= 	𝒎𝟎 ∙ 	 𝟏	–	
𝒗𝟐

𝒄𝟐

j𝟑𝟐
	

	
and,	together	with	(4.1),	the	integral	yields	
	

										𝑬𝒌𝒊𝒏 	= 	𝒎𝟎 ∙ 𝒄𝟐 ∙
𝟏

𝟏	–	𝒗𝒆𝒏𝒅
𝟐

𝒄𝟐 	
		– 	𝟏 	= 	𝒎𝒗𝒆𝒏𝒅 ∙ 𝒄

𝟐		– 		𝒎𝟎 ∙ 𝒄𝟐 	= 		 ∆𝒎 ∙ 𝒄𝟐	

	
Performing	work	on		𝑚		or	supplying	energy	to	𝑚	results	in	an	increase	of	mass	according	to	
	

															∆𝑾↙ 	= 	∆𝑬	 = 	∆𝒎 ∙ 𝒄𝟐	
	
Energy	and	mass	can	be	converted	into	each	other.	The	rest	mass		m0		corresponds	to	the	rest	energy		E0		of	amount			
𝑚2 · 𝑐"

			,	and	total	energy		is	given	by	
	

																				𝑬𝒕𝒐𝒕 	= 	𝑬𝟎 	+ 	𝑬𝒌𝒊𝒏 	= 	𝒎𝒗 ∙ 𝒄𝟐 	= 	
𝒎𝟎

𝟏	–	𝒗
𝟐

𝒄𝟐	
	 ∙ 𝒄𝟐	

	
	
Conservation	of	energy	and	conservation	of	dynamic	mass	melt	into	the	same	theorem.	By	choice	it	can	be	formulated	
as	conservation	of	energy	or	conservation	of	dynamic	mass.	
	
Nowadays	there	are	many	examples	illustrating	the	conversion	of	mass	into	energy	or	vice	versa.	Compare	the	
corresponding	chapters	in 'EEE': 
https://www.relativity.li/en/epstein2/read/f0_en/f3_en	
https://www.relativity.li/en/epstein2/read/f0_en/f4_en	
https://www.relativity.li/en/epstein2/read/f0_en/f5_en	
	 	

(5.1)	

(5.2)	

(5.3)	

(5.4)	



6.				Total	Energy,	Momentum	and	the	Pythagorean	Theorem	
	
	
Let	us	subtract	the	squared	rest	energy	from	the	squared	total	energy:		
	

𝐸uvu" 	− 	𝐸2" 	= 	
𝑚2

" ∙ 𝑐w

1 − 𝑣
"

𝑐"
	− 	𝑚2

" ∙ 𝑐w 	= 	𝑚2
" ∙ 𝑐w ∙ 	

1

1 − 𝑣
"

𝑐"
	− 	1 	=	

	

= 	𝑚2
" ∙ 𝑐w ∙ 	

1	 − 	 1 − 𝑣
"

𝑐"

1 − 𝑣
"

𝑐"
	 	= 	𝑚2

" ∙ 𝑐w ∙ 	
	𝑣
"

𝑐"

1 − 𝑣
"

𝑐"
	 	= 			

𝑚2
" ∙ 𝑣"

1 − 𝑣
"

𝑐"
	 	∙ 𝑐" 	= 	 𝑝"	∙ 𝑐"	

	
We	get	the	amazing	equation	
	

𝑬𝟎𝟐 	+ 	𝒑𝟐	∙ 𝒄𝟐 	= 	𝑬𝒕𝒐𝒕𝟐	
	
	
Rest	energy,	momentum	multiplied	by	the	speed	of	light	and	total	energy	form	the	sides	of	a	right	triangle.	In	STR	
energy	and	momentum	are	similarly	connected	as	time	and	space.	If	you	are	familiar	with	Epstein	diagrams	or	with	4-
vectors	this	is	a	simple	fact.	For	more	details	see		https://www.relativity.li/en/epstein2/read/e0_en/e4_en	.	
	

	
	
	
For	the	angle	𝜑		in	this	triangle	we	find	
	

	𝑠𝑖𝑛(𝜑) 	= 	
𝑝 ∙ 𝑐
𝐸uvu

	= 	
𝑚1 ∙ 𝑣 ∙ 𝑐
𝑚1 ∙ 𝑐"

	= 	
𝑣
𝑐
	≡ 	𝛽1	

	
and	

	𝑐𝑜𝑠(𝜑) 	= 	
𝐸2
𝐸uvu

	= 1	–	
𝑣"

𝑐"
		≡ 	

1
𝛾1
	

	
These	are	the	definitions	of	the	traditional	terms		𝛽		and		𝛾	.	
	 	

(6.1)	

(6.2)	

(6.3)	



7.		Total	Energy,	Momentum	and	the	Full	Speed	
	
	
We	may	divide	formula	(5.4)	by	formula	(4.2),	or	we	can	simply	state		
	

𝐸uvu
𝑐"

	= 	𝑚1 		= 	
𝑝
𝑣
		

	
Or	we	read	from	the	picture	in	section	6		

		
𝑝 · 𝑐
𝐸uvu

	= 	𝑠𝑖𝑛	𝜑	 = 	
𝑣
𝑐
	

	
Total	energy,	momentum	and	speed	𝑣		are	connected	by	the	equation	
	

																								𝒑 · 𝒄𝟐 	= 	𝑬𝒕𝒐𝒕 · 𝒗					
	

Formula	(7.1)	allows	e.g.	to	calculate	the	speed	of	the	center-of-mass	system	of	some	particles	from	total	momentum	
and	total	energy	of	these	particles.	
	
	
	
	
8.		Kinetic	Energy,	Momentum	and	'Half	the	Speed'	
	
	
Let	us	start	with	(6.1):	
	

𝑚1
" ∙ 𝑐w 	= 	𝑚2

" ∙ 𝑐w 	+ 	𝑚1
" ∙ 𝑣" ∙ 𝑐"	

	
Dividing	by		𝑐"		and	rearranging	the	terms	we	get	
	

𝑚1
" − 𝑚2

" ∙ 𝑐" 	= 	𝑚1
" ∙ 𝑣"	

	
Dividing	by		(𝑚1 + 𝑚2)		we	get	the	expression	(5.2)	for	kinetic	energy	on	the	left	side:	
	

𝑚1 − 𝑚2 ∙ 𝑐" 	= 	
𝑚1

"

𝑚1 + 𝑚2
∙ 𝑣" 	= 	

𝑚1

1 + 𝑚2
𝑚1

∙ 𝑣" 	= 	
𝑚1

1 + 1 − 𝑣
"

𝑐"

∙ 𝑣" 	= 	𝑚1 ∙ 𝑣 ∙
𝑣

1 + 1 − 𝑣
"	

𝑐"

		= 	𝑚1 ∙ 𝑣 ∙ 𝑤		

	
where		𝑤		stands	for	'half	the	speed'	of		𝑣		(see	section	3).	We	get	a	pretty	formula	connecting	kinetic	energy,	
momentum	and	half	the	speed:	
	

															𝑬𝒌𝒊𝒏 	= 	𝒎𝒗 ∙ 𝒗 ∙ 𝒘 = 	𝒑 ∙ 	𝒘	
	
The	same	formula	holds	in	'classical'	physics	!	There	we	have	
	

𝐸cde 	= 	
1
2
∙ 𝑚 ∙ 𝑣" 	= 	𝑚 ∙ 𝑣 ∙

𝑣
2
	= 	𝑝 ∙ 𝑤	

	
It	is	far	from	being	obvious	that	the	relativistic	expression	for	kinetic	energy	approaches	the	classical	term	if	the	
velocities	are	small	compared	with	the	velocity	of	light.	Obviously,	the	terms	for	momentum	and	half	the	speed	do	so,	
and	hence	does	their	product,	too.		
	
I	am	not	aware	of	a	text	book	presenting	(8.1).	
	 	

(7.1)	

(8.1)	



9.		Momentum	and	Energy	of	Light	Particles	
	
	
	
(5.1)	implies	that	no	finite	amount	of	energy	can	accelerate	a	body	of	some	rest	mass	to	the	speed	of	light.	Since	light	
quanta	or	photons	move	with	that	speed,	their	rest	mass	has	to	be	zero.	Nevertheless	they	carry	energy	and	
momentum.	Equation	(6.1)	says	for	a	particle	with		𝑚2 = 0			
	

0	 + 𝑝"	∙ 𝑐" 	= 	𝐸uvu"	
and	hence	
	

																		𝑬	 = 	𝑬𝒕𝒐𝒕 	= 	𝑬𝒌𝒊𝒏 	= 	𝒑 ∙ 𝒄	
	
We	can	deduce	(9.1)	also	by	inserting	the	speed	of	light	𝑐	for	𝑣	in	(7.1)	or	by	inserting	𝑐		for	half	the	speed	of	𝑐	in	(8.1).	
	
Together	with	Planck's	formula			𝐸 = ℎ · 𝑓			we	get	the	important	relations	
	

											𝑬	 = 	𝒉 ∙ 𝒇	 = 	𝒑 ∙ 𝒄	
and	
	

														𝒑	 = 	
𝑬
𝒄
	= 	

𝒉 ∙ 𝒇
𝒄

	= 	
𝒉
𝝀
			

	
Radiation	of	frequency		𝑓		consists	of	a	stream	of	particles	transmitting	energy		ℎ · 𝑓		and	momentum		𝑝 = ℎ · 𝑓	/	𝑐		.	
Taking	this	(at	the	time	revolutionary)	point	of	view	Einstein	explained	in	1905	all	the	confusing	phenomena	of	the	
photoelectric	effect.	
	
It	was	well	known	since	1884	that	light	carries	momentum	and	energy.	John	Henry	Poynting	derived	the	details	starting	
from	Maxwell's	equations,	and	he	proved	(9.1)	to	be	true	for	electro-magnetic	radiation.	
	
A	beautiful	illustration	of	light	pressure	give	the	comets:	Their	tails	always	turn	away	from	the	sun.	When	the	comet	has	
passed	perihelion	and	moves	away	from	the	sun	its	tail	flies	ahead	of	it	!	The	pressure	of	sun	light	blows	the	ions	and	
dust	particles	away	from	sun.	The	following	picture	shows	both	the	ion	tail	and	the	dust	tail	of	comet	Hale-Bopp.	The	
heavier	dust	particels	are	harder	to	accelerate,	and	so	the	tail	splits	into	different	parts:	
	
	

	
	

http://astronomy.swin.edu.au/sao/imagegallery/Hale-Bopp.jpg	(1997)	 	

(9.1)	

(9.2)	

(9.3)	



10.				𝐸 = 𝑚 · 𝑐"		by	Conservation	of	Momentum	and		𝐸 = 𝑝 · 𝑐	
	
	
Figure	a)	shows	a	body	of	rest	mass		𝑚2	and	two	quanta	of	energy	moving	symmetrically	towards	that	body.	Each	
quantum	carries	momentum		𝑝		and	energy		𝐸 = 𝑝 · 𝑐		.	After	absorbing	those	quanta	the	body	stays	at	rest	due	to	
symmetry	or	conservation	of	momentum.	His	energy	is	increased	by		∆𝐸 = 2 · 𝐸	,	and	his	mass	may	be	𝑚�	:	
	

	
	

Figure	b)	shows	the	same	process	in	a	coordinate	frame	moving	with	speed		𝑢		downwards.	The	bodies	speed	is		𝑢		
before	and	after	the	absorption.	The	quanta	fall	in	by	an	angle		∝		to	the	horizontal	line.	They	still	move	with	speed	𝑐	,	
and	so	we	have		𝑠𝑖𝑛(∝) 	= 	𝑢/𝑐	.	The	momenta		𝑝′		and		𝑞′		may	slightly	differ	from		𝑝	.	Conservation	of	momentum	in	
the	direction	of		𝑢		means	
	

	𝛾� · 𝑚� · 𝑢		 = 	 𝛾� · 𝑚2 · 𝑢		 + 	2 · 𝑝′ · 𝑠𝑖𝑛(∝) 	= 	 𝛾� · 𝑚2 · 𝑢		 + 	2 · 𝑝′ ·
𝑢
𝑐
			

	
Dividing	by		𝑢		(or	by		𝛾� · 𝑢	)	we	have			
	

	𝑚� 	= 	𝑚2 	+ 	2 ·
𝑝′
𝑐
·
1
𝛾�
		

	
That	equation	holds	for	all	velocities	𝑢	,	𝑢		may	be	as	small	as	you	like.	Hence	the	equation	holds	in	the	limit		𝑢 → 0	,	
too!	But	if		𝑢		approaches	zero,		𝑝′		approaches		𝑝		(and		𝛾�		approaches	1),	and	we	get	
	

𝑚� − 𝑚2 	= 	2 ·
𝑝
𝑐
		= 	2 · 	

𝐸
𝑐"
	= 		

∆𝐸
𝑐"

	

	
or	

																						∆𝑚		 = 		
∆𝐸
𝑐"

	

	
	
You	might	as	well	drop	the	terms	printed	in	red	for	very	small	velocities	𝑢	!	
	
Einstein	published	this	magnificent	derivation	in	1946.	It	is	to	be	found	in	"Out	of	My	Later	Years",	Random	House	1993,	
section	14	
	 	

(10.1)	



11.				𝐸 = 𝑚 · 𝑐"		by	Conservation	of	Momentum	and		𝐸 = 𝑝 · 𝑐	
	
	
Figure	a)	shows	two	identical	particles	with	rest	mass	𝑚2	moving	towards	each	other	with	speeds	𝑣		and		−𝑣	.	Total	
momentum	is	zero,	so	O,	the	center	of	mass,	is	at	rest.	Both	particles	have	the	same	distance	to	O.	
	

	
	

Figure	b)	shows	the	state	of	our	system	after	the	emission	of	a	flash	with	energy		𝐸	and	momentum		𝑝 = 𝛾 · 𝑚2 · 𝑣			
by	the	left	particle.	At	time		∆𝑡 = 𝑙/𝑐		after	that	emission,	the	flash	is	in	O.	The	left	particle	is	at	rest	now,	having	the	
mass	𝑚�	.	At	that	time	the	right	particle	is	in	distance	
	

𝑙 − 𝑥	 = 	𝑙 − ∆𝑡 · 𝑣	 = 	𝑙 −
𝑙
𝑐
· 𝑣	 = 	𝑙 · 1 −

𝑣
𝑐

	

	
to	the	center	of	mass	O.	Hence	the	equation	of	equilibrium	is	
	

𝑙 · 𝑚� = 	𝛾 · 𝑚2 · 𝑙 − 𝑥 	= 		𝛾 · 𝑚2 · 𝑙 · 1 −
𝑣
𝑐

	

	
The	dynamic	mass	of	the	flash	is	of	no	influence	to	the	balance	because	he	is	at	O	in	that	very	moment.		
We	divide	by		𝑙		and	use	the	equation			𝐸 = 𝑝 · 𝑐 = 𝛾 · 𝑚2 · 𝑣 · 𝑐			to	get	
	

𝑚� 	= 	𝛾 · 𝑚2 	− 	𝛾 · 𝑚2 ·
𝑣
𝑐
	= 	𝛾 · 𝑚2 	− 	

𝑝
𝑐
		= 		𝛾 · 𝑚2 	− 	

𝐸
𝑐"
		

	
If	the	energy	of	a	body	is	reduced	by		𝐸		the	dynamic	mass	of	that	body	is	reduced	by		 �

��
		!!																																					(11.1)	

	
In	reversed	time	order	that	means	that	the	supply	of	some	additional	energy		𝐸		increases	the	dynamic	mass	by	the	
amount	 �

��
	.	Figure	c)	shows	the	state	of	our	system	after	the	absorption	of	the	flash	(with	its	momentum	and	energy)	

by	the	right	particle.	The	particle	is	at	rest	now,	and	its	mass	is	
	

𝑚" 	= 	𝛾 · 𝑚2 	+ 	
𝐸
𝑐"
		

	
Hence	we	get	
	

																		𝒎𝟐 − 𝒎𝟏 	= 	 𝛾 · 𝑚2 	+
𝐸
𝑐"

− 𝛾 · 𝑚2 	−
𝐸
𝑐"

	= 	2 ·
𝐸
𝑐"
	= 	

∆𝑬
𝒄𝟐

	

	
	

(11.2)	



In	the	beginning,	both	particles	had	the	same	rest	mass	and	the	same	dynamic	mass.	After	the	transmission	of	energy	
and	momentum	the	particles	mass	(both	rest	mass	and	dynamic	mass	...)	show	a	difference	of			∆𝐸/𝑐"	.	
	
Energy	and	dynamic	mass	are	convertible.	The	factor	of	conversion	is	the	square	of	the	speed	of	light:	
	

∆𝑬	 = 	∆𝒎 · 𝒄𝟐	
	
Dividing	the	equation	for	conservation	of	energy	by		𝑐"		we	get	the	equation	for	conservation	of	dynamic	mass.	
Rest	mass	is	not	conserved,	our	calculations	show	
	

	𝑚� + 𝑚" 	= 	 𝛾 · 𝑚2 	− 	
𝐸
𝑐"

+ 𝛾 · 𝑚2 	+ 	
𝐸
𝑐"

	= 2 · 𝛾 · 𝑚2 		> 		2 · 𝑚2	

	
In	two	steps	the	kinetic	energies	of	the	particles	are	converted	to	additional	rest	mass	in	the	above	experiment.	
Of	course,	total	energy	and	total	momentum	are	the	same	in	all	states	of	the	experiment.	
	
	
The	basic	idea	to	use	the	stability	of	the	center	of	mass	when	particles	within	a	closed	system	exchange	energy	and	
momentum	comes	from	Einstein.	He	uses	a	box	around	the	particles	to	force	them	to	come	to	rest	again,	which	needs	
some	additional	discussions,	because	there	is	no	such	thing	as	a	rigid	body	in	STR.	
Francesco	Cester	finally	got	rid	of	that	box	in	his	book	"Newton	and	Relativity"	(Books	on	Demand,	2018).	He	works	
then	with	low-speed-approximations	that	are	well	justified	if	you	have	the	exchanche	of	some	photons	in	mind.	But	
with	that	approximations	the	difference	between	rest	mass	and	dynamic	mass	disappears.	
The	actual	section	is	a	enhanced	version	of	Cester's	presentation.	It	shows,	by	the	way,	that	conservation	of	dynamic	
mass	is	a	consequence	of	conservation	of	momentum.	
	
You	may	omit	all	the	𝛾-s	in	the	above	derivation,	arguing	that	the	velocity		𝑣		is	allowed	to	be	as	small	as	you	like.	Then	
you	have	another	derivation	of		∆𝐸	 = 	∆𝑚 · 𝑐"		that	does	not	presuppose	any	relativistic	findings	about	'dynamic	mass'	
and	'relativistic	momentum'.	However,	you	will	miss	then	the	important	point	that	∆𝐸	corresponds	in	general	to	an	
increase	in	dynamic	mass	and	not	in	rest	mass.	An	increase	in	rest	mass	can	show	up	in	special	situations.	
	
	
	
	
	

(11.3)	



	12.				𝐸 = 𝑚 · 𝑐"		by	Conservation	of	Momentum	and		𝐸 = ℎ · 𝑓	
	
	
A	body	at	rest	in	system	S		with	mass		𝑚2	simultaneously	emits	in	opposite	directions	two	quanta	of	radiation	(	both	
with	energy		ℎ · 𝑓	).	Their	momenta	add	up	to	zero,	and	so	the	body	stays	at	rest	in	system	S	.	The	body	may	have	rest	
mass	𝑚�		after	the	emission.		
	
Let	be	a	system	S'	moving	along	the	path	of	the	emitted	quanta	with	relative	speed	𝑣	as	measured	by	S.	The	emitting	
body	has	speed	𝑣	in	System	S'		before	and	after	the	emission.	Respecting	the	equation	of	conservation	of	momentum	in	
S'	and	using	(4.2),	(9.3)	and	the	Doppler	shift	formula	(1.4)	we	get	
	

𝑚2 · 𝑣

1	–	𝑣
"	

𝑐"

		= 		
𝑚� · 𝑣

1	–	𝑣
"	

𝑐"

			+ 		
ℎ · 𝑓
𝑐

·
(𝑐 + 𝑣
(𝑐 − 𝑣

	 		− 		
ℎ · 𝑓
𝑐

·
(𝑐 − 𝑣
(𝑐 + 𝑣

		

	
Rearranging	this	equation	and	doing	some	algebra	we	find	
	

𝑚2 − 𝑚� · 𝑣	 = 		
ℎ · 𝑓
𝑐

	 · 1	 − 	
𝑣"	

𝑐"
	 ·

1 + 𝑣𝑐
1 − 𝑣𝑐

	 	− 	
1 − 𝑣𝑐
1 + 𝑣𝑐

	 	=	

	

= 		
ℎ · 𝑓
𝑐

	 · 1	 − 	
𝑣
𝑐
	 · 1	 + 	

𝑣
𝑐
·

1 + 𝑣𝑐

1 − 𝑣𝑐

		− 	
1 − 𝑣𝑐

1 + 𝑣𝑐

	=	

	
	

= 		
ℎ · 𝑓
𝑐

	 · 1 +
𝑣
𝑐
		− 1 −

𝑣
𝑐

	= 		
ℎ · 𝑓
𝑐

·
2𝑣
𝑐
	

	
Dividing	by		𝑣		we	get	
	

												∆𝒎	 = 		𝟐 · 𝒉 · 𝒇	/	𝒄𝟐 	= 		 ∆𝑬	/	𝒄𝟐	
	
	
Radiating	away	the	energy		∆𝐸		reduces	the	rest	mass	of	the	body	by		∆𝐸	/	𝑐".	
	
	
This	calculation	was	stimulated	by	the	book	"Newton	and	Relativity"	by	Francesco	Cester	(Books	on	Demand,	2018).	
	
Cester	himself	refers	to	an	article	of	Fritz	Rohrlich	in	the	American	Journal	of	Physics	(Nr.	58	of	April	1990).	Rohrlich	
does	the	calculation	by	using	the	acoustic	Doppler	formula	(1.1)	instead	of	(1.4).	This	is	justified	by	the	fact	that	𝑣		may	
be	as	small	as	you	like.	Because	of	this	approximation	Rohrlich	draws	the	wrong	conclusion	that	the	emitted	energy	is	
the	same	in	both	frames	of	reference.		
	
However,	the	relativistic	calculation	shows	that		∆𝐸′ = ∆𝐸 · 𝛾	.	It's	exactly	this	result	Einstein	uses	in	his	late	1905	paper	
entiteld	"Ist	die	Trägheit	eines	Körpers	von	seinem	Energieinhalt	abhängig?".	We	will	present	his	line	of	arguments	in	
the	next	section.	He	uses	conservation	of	energy	instead	of	conservation	of	momentum.	
	
	 	

(12.1)	



13.				𝐸 = 𝑚 · 𝑐"		by	Conservation	of	Energy	and		𝐸 = ℎ · 𝑓	
	
	
In	september	1905	Einstein	published	an	addendum	to	his	seminal	STR	paper,	entitled	with	"Ist	die	Trägheit	eines	
Körpers	von	seinem	Energieinhalt	abhängig?".	Based	on	the	conservation	of	energy	he	gives	the	first	of	his	derivations	
of	the	formula		𝐸 = ∆𝑚 · 𝑐".	Our	presentation	is	a	little	bit	simpler,	we	let	the	direction	of	relative	speed	coincide	with	
the	direction	the	energy	quanta	are	emitted.	So	we	can	use	the	formula	(1.4)	for	the	longitudinal	Doppler	shift.	
	
Let	be	the	same	situation	as	in	section	12	:	A	body	at	rest	in	system	S	with	mass	𝑚2	emits	simultaneously	two	quanta	of	
radiation,	both	with	energy		𝐿/2	.	After	emission	the	body's	mass	is	𝑚�	.	Since	the	momenta	of	the	emitted	quanta	add	
up	to	zero	(or	due	to	a	symmetry	argument	...)	the	body	stays	at	rest	in	frame	S.	
	
In	the	rest	frame	S	of	the	body	conservation	of	energy	means			𝐸2 	= 	𝐸� 	+ 	𝐿			
	
Now	let	be	a	system	S'	moving	along	the	path	of	the	emitted	quanta	with	relative	speed	𝑣	as	measured	in	S.	The	
emitting	body	has	speed		𝑣		in	system	S'		before	and	after	the	emission.	Respecting	conservation	of	energy	in	S'	and	
using		(9.3)	and	the	Doppler	shift	formula	(1.4)	we	get	
	

𝐸2′	 = 	𝐸�′	 + 	
𝐿
2
·

(𝑐	 + 	𝑣)
(𝑐 − 𝑣)

	 +
(𝑐	– 	𝑣)
(𝑐 + 𝑣)

	 	= 	𝐸�′	 + 	
𝐿
2
·

𝑐 + 𝑣 	+ 	 𝑐 − 𝑣
𝑐" 	− 	𝑣"

	= 	𝐸�′	 + 	𝐿 ·
1	

1	–	𝑣
"

𝑐"

	

	
Hence	

(𝐸2′ − 𝐸�′) − (	𝐸2 − 𝐸�) 	= 	 (𝐸2′ − 𝐸2) − (𝐸�′ − 𝐸�) 	= 		𝐿 · 	
1	

1	–	𝑣
"

𝑐"

− 1 	

	
The	interpretation	of	(𝐸2′ − 𝐸2)	is	kinetic	energy		𝐾2′		of	the	body	in	system		S'		before	the	emission	of	energy,	and	
(𝐸�′ − 𝐸�)	is	kinetic	energy		𝐾�′		of	the	body	in	system		S'		after	the	emission	of	energy.	The	difference	of	these	kinetic	
energies	is	given	by	
	

𝐾2′	 − 𝐾�′	 = 	𝐿 · 	
1	

1	–	𝑣
"

𝑐"

− 1 = 	𝐿 · 1 +
1
2
·
𝑣"

𝑐"
+
3
8
·
𝑣w

𝑐w
+
15
48

·
𝑣�

𝑐�
+		. . .		+(−1) 	

	
There	is	a	loss	of	kinetic	energy	although	the	velocity	of	the	body	remained	the	same	!	This	implies	that	the	emission	of	
energy	goes	along	with	a	decrease	in	mass.	Neglecting	the	terms	of	higher	order	we	find	for	small	velocities	𝑣		(and	𝑣		is	
allowed	to	be	as	small	as	you	like	!)	
	

1
2
· (𝑚2 − 𝑚�) · 𝑣" 	= 	𝐿 ·

1
2
·
𝑣"

𝑐"
																	or																		∆𝒎	 = 	𝑳	/	𝒄𝟐						

	
Einstein	writes:	"Gibt	ein	Körper	die	Energie		𝐿		in	Form	von	Strahlung	ab,	so	verkleinert	sich	seine	Masse	um		𝐿	/	𝑐".	
Hierbei	ist	offenbar	unwesentlich,	dass	die	dem	Körper	entzogene	Energie	gerade	in	Energie	der	Strahlung	übergeht,	so	
dass	wir	zu	der	allgemeineren	Folgerung	geführt	werden:	Die	Masse	eines	Körpers	ist	ein	Mass	für	dessen	Energie-
inhalt."	 	



14.		Length	Contraction	
	
	
Let	the	coordinate	systems	of	"Red"	and	"Black"	move	against	each	other	with	velocity		𝑣		respectively		–	𝑣	.	Let	as	usual	
their	x-axes	fall	together	and	their	y-	and	z-axes	be	parallel,	and	let	𝑣		be	parallel	to	the	x-axis.	
	
Black	marks	two	points	A	and	B	along	his		x-axis	and	measures	their	distance	∆𝑥	with	his	yard	stick	or	with	a	clock	at	A	
and	a	mirror	positioned	at	B.	Then,	Black	measures	(with	two	synchronized	clocks)	the	time		∆𝑡		it	takes	Red	to	cover	the	
distance	from	A	to	B.	Now	Black	calculates	their	relative	speed		𝑣 = ∆𝑥	/	∆𝑡	.	
How	will	Red	measure	the	distance	between	A	and	B	on	Black's	x-axis	?	First,	Red	has	to	measure	the	relative	speed	𝑣	of	
the	reference	frames	in	the	same	way	as	Black	did:	Red	measures	(with	two	synchronized	clocks)	the	time	it	takes	for	
the	point	A	to	cover	a	well	known	distance	on	his	x'-axis.	For	symmetry	reasons,	Black	and	Red	agree	on	the	absolute	
value	of	𝑣	!	Second,	Red	measures	the	duration		∆𝑡′	of	his	flight	from	A	to	B.	Finally	Red	calculates			∆𝑥′ = 𝑣 · ∆𝑡′.	So	we	
have	

∆𝑥
∆𝑡
	= 	𝑣	 = 	

∆𝑥′
∆𝑡′

	

	
For	distances	in	the	direction	of	relative	speed	we	find,	using	the	time	dilation	formula	(1.3)	
	

∆𝑥′
∆𝑥

	= 	
∆𝑡′
∆𝑡
	= 	 1	–	

𝑣"

𝑐"
		

	
Red	calculates	a	shorter	length		∆𝑥′		for	the	fast	moving	line	segment	AB	than	Black	does:	
	

																			∆𝒙′	 = 	∆𝒙 ∙ 𝟏	–	
𝒗𝟐

𝒄𝟐
		

	
Black	measures	the	rest	length	or	the	eigen	length	of	the	line	segment	AB.	The	rest	length	always	is	the	longest	to	be	
measured.	
	
Length	contraction	or	Lorentz	contraction	is	an	immediate	consequence	of	time	dilation	!		
Fast	watches	are	running	slow,	and	fast	yard	sticks	are	becoming	short.	
If	Newton's	Absolute	Time	must	die	then	his	Absolute	Space	must	share	the	same	fate.	
	
Measuring	lenghts	in	directions	perpendicular	to	relative	speed	is	not	affected	by	length	contraction	!	Epstein's	
argument	goes	as	follows:	If	there	were	something	like	transverse	contraction	the	track	width	should	shrink	with	
increasing	speed	of	the	train	-	as	seen	from	the	train	system.	As	seen	from	the	track	system	the	wheel	gauge	of	the	train	
should	shrink	with	increasing	relative	speed.	So	the	track	would	be	too	wide	and	too	narrow	at	the	same	time,	and	that	
is	impossible.	Hence	there	is	no	such	thing	as	'transverse	contraction':	
	
	

																				∆𝒚′	 = 	∆𝒚												and											∆𝒛′	 = 	 ∆𝒛	
	
	
	
Compare	the	corresponding	chapters	in	'EEE':	
https://www.relativity.li/en/epstein2/read/b0_en/b3_en	
https://www.relativity.li/en/epstein2/read/b0_en/b4_en	
https://www.relativity.li/en/epstein2/read/b0_en/b5_en	
	 	

(14.1)	

(14.2)	



15.		Desynchronisation	
	
	
Clocks	in	different	frames	of	reference	do	not	tick	at	the	same	rate,	hence	it	does	not	make	sense	to	try	to	synchronize	
them.	However,	it	is	possible	to	synchronize	clocks	resting	in	the	same	frame.	Doing	this	means	to	define	time	in	that	
frame	!	More	details	about	that	in		https://www.relativity.li/en/epstein2/read/b0_en/b1_en	.	
	
Now	let	Black	synchronize	his	clocks	in	his	system	S	(t,x,y,z),	and	let	Red	do	the	same	in	his	system	S'	(t',x',y',z').	Then	
both	know	their	own	clocks	to	run	synchronously	-	and	both	observe	that	the	clocks	in	the	other	system	are	
desynchronized	in	a	very	specific	way	!!		
For	Black,	two	clocks	in	Red's	frame	separated	along	the	x'-axis	by	the	eigen	distance	∆𝑥′	are	desynchronized	by		
	

∆𝒕′	 = 	−∆𝒙′ · 	
𝒗
𝒄𝟐
		

or	
	

∆𝒕′ · 𝒄	 = 	−∆𝒙′ · 	
𝒗
𝒄
		

	
The	factor		𝑐		leftside	in	the	second	formula	merely	converts	time	intervals	into	distances.	Therefore,	desynchronisation	
is	proportional	to	the	eigen	distance	of	the	clocks	along	the	direction	of	relative	speed	and	to	the	quotient	of		𝑣	and		𝑐	.		
The	minus	sign	says	that	clocks	that	are	in	an	ahead	position	fall	back	in	time	(as	seen	by	Black	!).	No	wonder,	these	
clocks	did	run	away	from	the	sync	pulse	...	see		https://www.relativity.li/en/epstein2/read/b0_en/b6_en	.	
For	Red	however	all	of	his	own	clocks	are	perfectly	synchronized.	
	
The	starting	point	of	Einstein's	analysis	of	time	was	to	realize	that	two	events	A	and	B	occure	simultanously	for	one	
observer,	while	A	happens	before	B	for	another	and	B	happens	before	A	for	a	third	one	!	The	statement	"these	two	
clocks	run	synchronously"	is	not	an	objective	fact	given	for	all	observers,	but	rather	a	statement	that	may	be	true	in	
some	frame	of	reference	and	false	in	another.	"It's	About	Time"	is	the	title	of	Mermin's	beautiful	book	on	STR	...	
	
A	short	derivation	of	the	above	formula	is	presented	on		https://www.relativity.li/en/epstein2/read/b0_en/b6_en	.	
	
	
	
Desynchronisation	is	the	third	basic	phenomenon	STR	introduces	for	measurements	of	time	intervals	and	space	
intervals	(the	others	are	time	dilation	and	length	contraction).	Measurements	in	STR	without	regarding	
desynchronisation	would	quickly	lead	to	contradictions.	How	is	it	possible	that	everybody	sees	the	clocks	of	the	others	
running	slow?	How	does	one	avoid	the	chain	of	inequalities		∆𝑡′	 < 	∆𝑡	 < 	∆𝑡′		??	Many	of	the	innumerous	
'falsifications'	of	STR	are	based	on	this	logical	short	circuit.	
	
It	is	necessary	to	take	into	account	the	desynchronisation	of	a	set	of	fast	clocks	if	you	want	to	combine	all	
measurements	in	two	different	frames	of	reference	without	contradictions.	Unfortunately	most	of	the	text	books	avoid	
the	topic.	The	next	section	presents	a	sample	problem	to	show	precisely	how	time	dilation,	length	contraction	and	
desynchronisation	work	together	for	complete	and	consistent	relative	measurement.	
	
	 	

(15.1)	

(15.2)	



16.		Sample	Problem	for	STR	Kinematics	
	
	
The	following	sample	problem	shows	clearly	how	time	dilation,	length	contraction	and	desynchronisation	together	give	
a	complete	picture	about	measurements	in	different	frames	of	reference.	
	
In	Black's	laboratory	there	is	a	pipe	of	12	m	length	at	rest.	The	pipe	is	equipped	at	both	ends	with	detectors/clocks.	Now	
let	a	particle	fly	with	velocity		𝑣 = 0.8 · 𝑐		through	that	pipe.	The	rest	frame	of	the	particle	is	called	the	Red	system.	Let	
us	answer	the	following	questions:		
	

1. What	does	Black	say	about	the	time	it	takes	the	particle	to	travel	through	the	pipe	?	
2. What	does	Black	say	about	the	corresponding	time	interval	in	Red's	system	?	
3. How	long	is	the	pipe	as	seen	by	Red	?	
4. What	does	Red	say	about	the	time	interval	it	takes	the	pipe	to	fly	over	the	particle	?	
5. What	does	Red	say	about	the	time	passing	by	on	each	of	Black's	clocks	during	that	flight	?	
6. What	is	Red's	explanation	of	Black's	time	measurement	?	

	
Most	text	books	carefully	avoid	asking	questions	5	and	6.	Without	introducing	desynchronisation	question	5	causes	
much	confusion	and	question	6	cannot	be	answered	at	all.	
	
However,	all	of	the	above	questions	are	easy	to	answer.	For	short	we	write		√		for	the	well	known	root	term		
	

√		= 1	–	
𝑣"

𝑐"
	= 	 1 − 0.8" 	= 	0.6	

	
1. Time	is	distance	divided	by	velocity:		∆𝑡	 = 	∆𝑥/𝑣	 = 	12	m	/	(0.8 · 3 · 10�	m/s) 	= 	50	ns	
2. Due	to	time	dilation	Red	will	measure	a	shorter	duration:		∆𝑡′ = ∆𝑡 · √	 = 50	ns · 0.6 = 30	ns	
3. Red	sees	the	pipe	as	length	contracted:			∆𝑥′ = ∆𝑥 · √		= 12	m · 0.6 = 7.2	m	
4. Time	is	distance	divided	by	velocity:	For	the	flight	of	the	pipe	over	Red	with	speed	v		it	takes	

∆𝑡′	 = 	∆𝑥′	/	𝑣	 = 	7.2	m	/	(0.8 · 3 · 10�	m/s)	 = 	30	ns		
Black	and	Red	are	in	complete	agreement	about	Red's	measurement	!	

5. Black's	fast	clocks	tick	slow	as	seen	by	Red.	During	the	30	ns	passing	on	Red's	clock,	on	each	of	Black's	clocks	
passes	the	time			∆𝑡	 = 	∆𝑡′ · √	 = 	30	ns · 0.6	 = 	18	ns		!!	

6. However,	Red	can	calculate	the	time	Black	measures	in	this	experiment.	Black's	clocks	are	(as	seen	by	Red)	
desynchronised	by			∆𝑡	 = 	∆𝑥 · 𝑣	/	𝑐" 	= 	12	m · 0.8	/	(3 · 10�	m/s)	 = 	32	ns	.	Black's	rear	clock	is	32	ns	
ahead	!	Together	with	the	18	ns	of	the	'actual'	duration	Black	will	measure	50	ns	using	his	two	clocks	
positioned	at	both	ends	of	the	pipe.	
	
	
	

Black	needs	two	distant	clocks	for	his	measurements,	one	at	each	end	of	the	pipe.	Their	synchronization	is	no	objective	
fact	given	to	all	observers	!	Both	Red	and	Black	are	able	to	calculate	the	results	of	the	measurements	of	the	other.	Their	
calculations	are	in	complete	agreement	with	the	effective	measurements.	The	measured	values	differ,	but	they	are	not	
contradictory.	The	values	are	'relative',	but	not	arbitrary.	
	
	
	



17.		Transverse	Velocities	and	Transversal	Doppler	Shift	
	
	
	
Let	the	inertial	frames	of	"Red"	and	"Black"	move	against	each	other	with	relative	speed		𝑣	,	with	their	axes	oriented	as	
usual	and		𝑣		being	parallel	to	the	x-	and	the	x'-axes.	
	
In	Red's	frame	S'	(t',x',y',z')	an	object	is	moving	with	speed		𝑢′		along	the	y'-direction.	How	calculates	Black	the	y-
component		𝑢	of	the	velocity	that	object	has	in	his	frame	S	(t,x,y,z)	?	

We	have			𝑢 = ∆𝑦/∆𝑡		,		𝑢′ = ∆𝑦′/∆𝑡′		and		∆𝑦 = ∆𝑦′	.	Moreover,	for	Black	holds			∆𝑡′ = ∆𝑡 · 1	–	1
�

��
			

	
Hence	we	get	
	

																			𝒖	 = 		
∆𝑦
∆𝑡
		= 		

∆𝑦′
∆𝑡

		= 		
∆𝑦′
∆𝑡′

· 1	–	
𝑣"

𝑐"
		= 		𝒖′ · 𝟏	–	

𝒗𝟐

𝒄𝟐
				

	
For	Black,	the	transverse	velocity		of	the	object	is	slowed	down	by	the	well	known	root	factor.	All	processes	are	slowed	
down	in	Red's	world	as	seen	by	Black	!	Let	us	look	back	to	the	transversal	Doppler	shift	in	this	context:	
	
Red	crosses	in	some	distance		∆𝑥	the	x-axis	of	Black	with	velocity		𝑣		in	y-direction.	For	the	moment	the	distance	of	Red	
and	Black	does	not	change.	But	any	oscillator	in	Red's	frame	undergoes	time	dilation	as	seen	by	Black.	If	Red	is	sending	
in	his	frame	with	frequency		𝑓′		Black	receives	waves	with	frequency	
	

							𝒇	 = 	𝒇′ · 𝟏	–	
𝒗𝟐

𝒄𝟐
	

	
Once	again,	this	is	the	formula	for	the	transversal	Doppler	shift.	For	Black	all	processes	in	Red's	frame	appear	delayed	...	
	
...	and	for	Red	things	are	just	the	other	way	round	!		
	
	
We	will	use	formula	(17.1)	for	transversal	speed	in	the	next	section	to	derive	the	STR	expression	of	momentum	with	a	
absolute	minimum	of	assumptions.	
	
	
	
	

(17.1)	

(1.6)				≡				(17.2)	



18.		Derivation	of	Relativistic	Momentum	Based	on	a	Minimum	of	Assumptions	
	
	
	
In	section	4	we	derived	the	STR	formula	of	momentum	striving	for	conservation	of	momentum	and	conservation	of	
mass.	The	derivation	presented	in	this	section	neither	assumes	conservation	of	mass	nor	conservation	of	momentum.	
The	equation	for	the	momenta	is	given	by	the	symmetry	of	the	arrangement.	
The	same	presentation	can	be	found	at		https://www.relativity.li/en/epstein2/read/e0_en/e1_en		or	in	the	book	"Die	
Relativitätstheorie	Einsteins"	of	Max	Born	(first	edition	1920,	enhanced	editions	1964	and	1969).	
	
The	identical	twins	Peter	and	Danny	(	Epstein's	nephews	...	)	exchange	completely	symmetric	punches	standing	on	
platforms	of	two	Einstein	trains	:	

	

	
	

The	relative	speed	of	the	trains	is		𝑣	,	both	fists	have	the	same	rest	mass		m0		and	both	young	men	are	punching	with	
the	same	speed		𝑢		transverse	to	the	velocity	of	the	train	(as	measured	by	themselves!).	Due	to	symmetry	both	
momenta	of	their	fists	in	direction	of	their	punch	add	up	to	zero	:	
	

𝑝¡(𝑃𝑒𝑡𝑒𝑟) 	= 		−	𝑝¡(𝐷𝑎𝑛𝑛𝑦)		
	
For	Peter	the	transverse	velocity		𝑢′	of	Danny's	fist	is	slowed	down	following	(17.1).	He	wonders	why	Danny	could	hit	
him	so	hard	by	his	slow	hand.	If	Danny	is	not	hiding	some	additional	mass	in	his	fist	we	have	to	suspect	mass	might	
depend	on	relative	speed.	So,	Peter	writes	down	the	following	equation	for	the	momenta	in	the	y-direction:	
	

	𝑚� · 𝑢	 = 		−	𝑚1¦�§ · 𝑢′		 = 	−	𝑚1¦�§ · (−𝑢) 	 · 1	–	
𝑣"

𝑐"
					

	
Let	(interim)		𝑣 + 𝑢′	stand	for	the	velocity	of	Danny's	fist	as	seen	in	Peter's	frame.	Dividing	by		𝑢		we	get	
	

		𝑚� 	= 	𝑚1¦�§ · 1	–	
𝑣"

𝑐"
							

	
This	holds	for	arbitrarily	small	velocities		𝑢	!	So	it	is	true	in	the	limit	of		𝑢′ → 0	.	Then	we	have		𝑢 = 0	,		𝑚�		turns	into	
	𝑚2	,		𝑚1¦�§		into		𝑚1		and	we	get	the	equations	(4.1)	and	(4.2)	:	
	
	

													𝒎𝒗 		= 		
𝒎𝟎

𝟏	–	𝒗
𝟐

𝒄𝟐

		= 		𝜸 · 	𝒎𝟎																and														𝒑	 = 	𝒎𝒗 ∙ 𝒗		 = 		𝜸 · 	𝒎𝟎 	 · 𝒗	

					
	 	

							(18.2)	

(18.1)	



19.		Conservation	of	Momentum	Implies	Conservation	of	Dynamic	Mass	
	
	
In	section	18	we	derived	the	formulas	(4.1)	and	(4.2)	of	dynamic	mass	and	STR	momentum	based	from	nothing	else	
than	time	dilation.	We	did	not	use	conservation	of	momentum	nor	conservation	of	any	type	of	mass.	In	this	section	we	
deduce	conservation	of	dynamic	mass	from	conservation	of	momentum.	The	line	of	arguments	and	the	figures	are	
taken	from	"The	Wonderful	World	of	Relativity"	by	Andrew	M.	Steane	(Oxford	University	Press	2011)	:	
	

	
	
Figure	(a)	of	the	figure	shows	a	mass		M	at	rest,	disintegrating	into	two	pieces	with	rest	mass		𝑚�		and		𝑚"	.	The	pieces	
will	fly	into	opposite	directions	due	to	conservation	of	momentum.	Let	the	velocities		𝑣�		and		𝑣"		be	horizontal.	Figure	
(b)	shows	the	same	disintegration	as	observed	in	a	frame	moving	with	speed	𝑢		downwards.	With	(18.2)	conservation	
of	the	vertical	component	of	momentum	means	
	

𝑀 · 𝑢 · 𝛾� 	= 	𝑚� · 𝑢 · 𝛾J© 		+ 	𝑚" · 𝑢 · 𝛾J�		
	
Dividing	by		𝑢		we	get	
	

𝑀 · 𝛾� 	= 	𝑚� · 𝛾J© 		+ 	𝑚" · 𝛾J�		
	
The	equation	is	true	for	arbitrarily	small	values	of		𝑢	.	In	the	limit		𝑢 → 0		we	get	
	

𝑀	 = 	𝑚� · 𝛾1© 		+ 	𝑚" · 𝛾1�		
	
(19.1)	expresses	conservation	of	dynamic	mass.	Rest	mass	is	not	conserved,	the	values	of		𝛾1© 	and		𝛾1� 	are	greater	than	
1	;	we	have				𝑀 > 𝑚� + 𝑚"		.	
	
Still	following	Andrew	M.	Steane	we	rewrite	equation	(19.1)	:	
	

𝑴	 = 	𝒎𝟏 	+ 	𝒎𝟏 · (𝜸𝒗𝟏 − 𝟏) 		+ 	𝒎𝟐 	+ 	𝒎𝟐 · (𝜸𝒗𝟐 	− 𝟏)	
	
On	the	right	side,	after	the	splitting,	total	dynamic	mass	is	composed	of	the	rest	masses	and	two	small	additional	
masses.	Multiplying	(19.2)	by		𝑐"		turns	conservation	of	dynamic	mass	into	conservation	of	total	energy:	
	

𝑴	∙ 𝒄𝟐 	= 	𝒎𝟏	∙ 𝒄𝟐 	+ 	𝒎𝟏	∙ 𝒄𝟐 · (𝜸𝒗𝟏 − 𝟏) 		+ 	𝒎𝟐	∙ 𝒄𝟐 	+ 	𝒎𝟐	∙ 𝒄𝟐 · (𝜸𝒗𝟐 	− 𝟏)	
	
On	the	right	side,	total	energy	is	given	by	the	sum	of	the	rest	energies	and	the	kinetic	energies.	If	you	accept	the	idea	of	
rest	energy	this	argument	provides	another	derivation	of	STR	kinetic	energy.	No	forces,	no	work	performed,	no	integral,	
just	conservation	of	momentum!	
	
In	reversed	time	order	the	above	process	is	known	as	perfectly	inelastic	collision	and	is	thoroughly	discussed	in	the	
book	"Die	Relativitätstheorie	Einsteins"	published	by	Max	Born	in	1920	(still	available	by	Springer	1964	and	later).	
	
	 	

(19.1)	

(19.2)	

(19.3)	



20.		Deriving	the	Lorentz-Transformations	
	
	
Let	the	inertial	frames	of	"Red"	and	"Black"	move	against	each	other	with	relative	speed		𝑣	.	Let	the	coordinate	frames	
be	oriented	as	usual,	with	the	x-axes	along	the	same	straight	line	and	the	y-axes	and	z-axes	being	parallel.	Black	labels	
events	in	his	frame	S	with	coordinates		(t,x,y,z)	,	Red	does	the	same	in	his	system	S'	using	coordinates	(t',x',y',z')	.	How	
can	we	calculate	the	coordinates	of	a	specific	event	in	frame	S	if	we	know	its	coordinates	in	S'	?	
	
Following	(14.2)	there	is	no	'transverse	contraction',	and	so	we	have		
	

																												𝒚	 = 	𝒚′										und									𝒛	 = 	𝒛′	
	
To	find	the	transformations	of	the	𝑡′-		and	𝑥′-	values	we	need	an	additional	agreement:	Both	Red	and	Black	reset	their	
master	clocks	positioned	at	(0,0,0)	at	the	very	moment	their	coordinate	frames	coincide.	Afterwards,	Red	and	Black	
synchronised	all	the	other	clocks	in	their	own	frame	with	that	master	clock.	Both	preconditions	are	necessary,	because	
it	does	not	make	sense	to	compare	measured	coordinates	of	a	single	event.	We	can	only	compare	intervals	of	time	and	
intervals	of	space.	For	transforming	time-	and	space-coordinates	we	need	an	event	of	reference	or	a	common	origin-
event.	Later	events	are	labelled	by	their	distance	(in	time	and	space)		to	that	event	of	reference.	
	
All	of	that	given,	let	Red	ascribe	the	labels		(𝑡′, 𝑥′)	to	a	specific	event.	For	Black,	the	Red	clock	positioned	at		𝑥′		is	
desynchronised	against	Red's	masterclock	in	Red's	origin.	According	to	(15.1)	the	Red	master	clock	showed	
	

𝑡′	 + 	
𝑥′ · 𝑣
𝑐"

		
	
when	that	event	occurred.	But,	like	all	clocks	in	Red's	frame,	that	master	clock	runs	slow	as	seen	by	Black.	Therefore	
Black	calculates	the	time	his	clocks	showed	when	that	event	happened	by	
	

																										𝒕	 = 	
	𝒕′	 + 	𝒙′ · 𝒗𝒄𝟐 	

𝟏	–	𝒗
𝟐

𝒄𝟐

	

	
What	is	Black's	calculation	of	the	position	𝑥	of	that	event	in	his	frame	?	The	position	of	Red's	origin	is	given	by	
	𝑂®¯° = 𝑣 · 𝑡	.	For	Black,	Red's	measurement	of	the	distance		𝑥′		of	that	event	from	is	influenced	by	Lorentz	contraction.	
So	Black	calculates	
	

																								𝒙	 = 	𝑣 · 𝑡	 +
𝑥′

1	–	𝑣
"

𝑐"

	= 	
𝑣 · 𝑡′

1	–	𝑣
"

𝑐"

	+ 	
𝑥′

1	–	𝑣
"

𝑐"

	= 	
	𝒙′ + 𝒗 · 𝒕′

𝟏	–	𝒗
𝟐

𝒄𝟐

		

	
Time	and	space	coordinates	cannot	be	separated	any	longer.	
	
For	the	reverse	transformations	we	just	have	to	replace		𝑣		by		−𝑣	,	the	roles	of	Red	and	Black	are	completely	
symmetric.	
	
Henri	Poincaré	has	named	this	group	of	coordinate	transformations	'Lorentz-Transformations'.	Hendrik	Antoon	Lorentz	
introduced	them	shortly	before	1900	to	handle	the	contradictions	arising	from	a	constant	speed	of	light	and	a	resting	
ether	system.	Poincaré	further	showed	that	these	transformations	constitute	a	group	in	the	sense	of	mathematical	
group	theory.		
	
	
	
	
	
	 	

(20.1)	

(20.2)	

(20.3)	



Let	us	write	down	the	Lorentz-transformations	for	both	directions:	
	
	

𝒕	 = 	
𝒕′	 + 	𝒙′ · 𝒗𝒄𝟐

𝟏	–	𝒗
𝟐

𝒄𝟐

																																																			𝒕′	 = 	
𝒕	 − 	𝒙 · 𝒗𝒄𝟐

𝟏	–	𝒗
𝟐

𝒄𝟐

						

	
	

𝒙	 = 	
𝒙′	 + 	𝒗 · 𝒕′

𝟏	–	𝒗
𝟐

𝒄𝟐

																																																		𝒙′	 = 	
𝒙	 − 	𝒗 · 𝒕

𝟏	–	𝒗
𝟐

𝒄𝟐

								

	
	

			𝒚	 = 	𝒚′																																																																	𝒚′	 = 	𝒚									
	

																															𝒛 = 	𝒛′																																																																		𝒛′	 = 	𝒛										
	
	
We	will	need	these	transformations	in	the	next	section	to	calculate	differential	terms	like		𝑑𝑥′	/	𝑑𝑡			or		𝑑𝑡	/	𝑑𝑡′	.	
	
	
Newton's	Absolute	Time	requests		𝑡 = 𝑡′	,	together	with	his	Absolute	Space	we	further	have			𝑥 = 𝑥′ + 𝑣 · 𝑡′			and	
𝑥′ = 𝑥 − 𝑣 · 𝑡		.	These	are	the	well	known	Galilei	transformations.	They	follow	from	the	Lorentz	transformations	in	the	
limit	of		𝑐	 → ∞	.	The	mere	existence	of	a	limiting	speed		is	not	compatible	with	Newton's	Absolute	Time	and	Absolute	
Space,	it	forces	the	developement	of	STR	!	
	
	
Let	us	note	these	transformations	by	using	the	abbreviations		𝛽1		and		𝛾1		as	defined	in	(6.2)	and	(6.3)	:	
	
	

𝒕	 = 𝜸𝒗 · 𝒕′	 + 	𝜷𝒗 ·
𝒙′
𝒄

																																																	𝒕′	 = 𝜸𝒗 · 𝒕	 − 	𝜷𝒗 ·
𝒙
𝒄
																

	
𝒙	 = 	𝜸𝒗 · 	𝒙′	 + 	𝜷𝒗 · 𝒄 · 𝒕′	 																																										𝒙′	 = 	𝜸𝒗 · 	𝒙	 − 	𝜷𝒗 · 𝒄 · 𝒕	 									

	
𝒚	 = 	𝒚′																																																																						𝒚′	 = 	𝒚																			

	
																														𝒛	 = 	𝒛′																																																																							𝒛′	 = 	𝒛																				

	
	
	
Multiplying	the	equations	for	𝑡	and	𝑡′		by	𝑐	we	get	equations	for	the	new	variables		𝑐 · 𝑡		and		𝑐 · 𝑡′	.	These	are	formally	
identical	to	those	for	the	variables		𝑥	and		𝑥′	!	The	same	effect	has	the	choice	of	units	for	time	and	space	measurement	
so	that	the	speed	of	light	becomes	1	.		
	
The	full	symmetry	group	of	STR	results	when	you	add	the	rotations	of	space	to	the	Lorentz	transformations.	The	
resulting	group	is	called	the	Poincaré	group.	Poincaré	also	proved	that	group	to	be	the	symmetry	group	of	Maxwell's	
theory.	
	
Lorentz	transformations	handle	only	coordinate	frames	in	special	orientation	to	each	other	(the	x-axes	coinciding,	the	
y-	and	z-axes	being	parallel	and	relative	speed	𝑣	running	along	the	x-axes).	This	special	situation	is	frequently	called	a	
'Lorentz	boost'.	But	is	this	situation	relly	so	special	?	We	are	free	to	choose	our	coordinate	frames	and	why	should	we	
not	choose	one	which	makes	our	calculations	as	simple	as	possible	?	
	 	

(20.4)	

(20.5)	



21.		The	Addition	of	Arbitrary	Velocities	
	
	
Let	us	derive	the	formulas	for	the	transformation	of	arbitrary	velocities	from	the	Lorentz	transformations.	
	
Let	the	inertial	frames	of	Red	and	Black	be	oriented	as	usual.	Red	moves	with	relative	speed		𝒗		along	the	x-axis	of	
Black.	In	Red's	system	some	object	moves	with	velocity		𝒖′			in	arbitrary	direction.	What	is	the	velocity		u		of	that	object	
in	Black's	frame	?	
	
We	use	the	notations	
	

𝒗	 = (	𝑣	, 0	, 0	)				,					𝒖′	 = 	 (	𝑢³′	, 𝑢¡′	, 𝑢´′	) 	= 		
𝑑𝑥′
𝑑𝑡′

	 ,
𝑑𝑦′
𝑑𝑡′

	 ,
𝑑𝑧′
𝑑𝑡′

								and							𝒖	 = 	 (	𝑢³	, 𝑢¡	, 𝑢´	) 	= 		
𝑑𝑥
𝑑𝑡
	 ,
𝑑𝑦
𝑑𝑡
	 ,
𝑑𝑧
𝑑𝑡
	 	

	
We	calculate	the	components	of		𝒖	by	using	differential	terms	calculated	from	the	formulas	(20.5)	of	the	last	section	:	
	
	

𝑢³ 	= 		
𝑑𝑥
𝑑𝑡
	= 	

𝑑𝑥
𝑑𝑡′

·
𝑑𝑡′
𝑑𝑡
	= 	

𝑑𝑥
𝑑𝑡′
𝑑𝑡
𝑑𝑡′

	= 	
𝛾 · 	 𝑑𝑥′𝑑𝑡′ 	+ 	𝛽 · 𝑐 ·

𝑑𝑡′
𝑑𝑡′

𝛾 · 	 𝑑𝑡′𝑑𝑡′ 	+ 	𝛽 ·
1
𝑐 ·
𝑑𝑥′
𝑑𝑡′

		= 		
𝑢³′	 + 	

𝑣
𝑐 · 𝑐 · 1

1 +	𝑣𝑐 ·
1
𝑐 · 𝑢³′

		= 		
𝑢³′	 + 	𝑣

1 + 𝑣 · 𝑢³′𝑐"
									

	
	
This	is	formula	(2.1)	again!		
	
In	a	similar	way	we	calculate	the	terms	for		𝑢¡		and		𝑢´	:	
	

𝑢¡ 	= 		
𝑑𝑦
𝑑𝑡
	= 	

𝑑𝑦
𝑑𝑡′

·
𝑑𝑡′
𝑑𝑡
	= 	

𝑑𝑦
𝑑𝑡′
𝑑𝑡
𝑑𝑡′

	= 	
	𝑑𝑦′𝑑𝑡′ 	

𝛾 · 	 𝑑𝑡′𝑑𝑡′ 	+ 	𝛽 ·
1
𝑐 ·
𝑑𝑥′
𝑑𝑡′

		= 		
𝑢¡′	

𝛾 · 1 + 	𝑣𝑐 ·
1
𝑐 · 𝑢³′

		= 		
𝑢¡′

𝛾 · 1 + 𝑣 · 𝑢³′𝑐"
				

	

and	in	the	same	manner																𝑢´ 	=		. . .		 . . .		= 		
𝑢´′

𝛾 · 1 + 𝑣 · 𝑢³′𝑐"
	

	
	
The	same	formulas	enable	us	to	calculate		𝒖′		from		𝒗		and		𝒖		if		𝒗		is	replaced	by	−	𝒗	.	
	
	
	
	
Now	let	us	suppose	the	z-component	of		𝒖′		to	be	zero.	Hence	the	z-component	of		𝒖		is	zero,	too.	This	is	no	limitation	
of	generality:	By	rotation	of	the	frames		S		and		S'		around	the	x-axis	you	can	always	arrange	the	x-y-plane	to	fall	
together	with	the	plane	defined	by		𝒗		and	𝒖′	.	
	
Let	us	denote	by		𝛼′		the	angle	between	𝒖§		and		𝒗	.	With		𝑢´′ = 0		by	arrangement	we	have	
	

𝑡𝑎𝑛(𝛼′) 	= 	
𝑢¡′
𝑢³′

	

	
We	calculate	the	angle		𝛼		between		𝒖		and		𝒗		using	(21.1)	and	(21.2)	:	
	
	

(21.1)	

(21.2)	

(21.3)	

(21.4)	



									𝑡𝑎𝑛(𝛼) 	= 	
𝑢¡
𝑢³
	= 	

𝑢¡′

𝛾 · 1 + 𝑣 · 𝑢³′𝑐"
	

𝑢³′	 + 	𝑣

1 + 𝑣 · 𝑢³′𝑐"
	
	= 	

𝑢¡′ · 1	–	𝑣
"

𝑐"
𝑢³′	 + 	𝑣

	

	
A	positive	velocity	𝑣		implies	the	numerator	decreased	and	the	denominator	increased.	In	that	case	we	find				
𝑡𝑎𝑛(𝛼) 	< 	𝑡𝑎𝑛(𝛼′)	.	
	
		
	
Einstein	started	with			

𝒖" 	= 	 𝑢³ " 		+ 𝑢¡
"
					,					𝒖′" 	= 	 𝑢³′ " 		+ 𝑢¡′

"
								and							𝑡𝑎𝑛(𝛼′) 	= 	

𝑢¡′	
𝑢³′	

						

	
and	found	"by	a	simple	calculation"	
	
	

															𝒖	 = 	
(𝑣" 	+ 𝑢′" 	+ 2 · 𝑣 · 𝑢′ · 𝑐𝑜𝑠	𝛼′	) 	− 	 𝑣 · 𝑢′ · 𝑠𝑖𝑛	𝛼′𝑐

"
	

1 + 𝑣 · 𝑢³′ · 𝑐𝑜𝑠	𝛼′𝑐"
	

	
	
Einstein	writes:	"Es	ist	bemerkenswert,	dass		𝒗		und		𝒖§		in	symmetrischer	Weise	in	den	Ausdruck	für	die	resultierende	
Geschwindigkeit	eingehen.	Hat	auch		𝒖§	die	Richtung	der	x-Achse	so	erhalten	wir	..."	...	formula	(2.1)	again.	Then	
we	have		𝑐𝑜𝑠(𝛼′) = 1		and		𝑠𝑖𝑛(𝛼′) = 0	.			
	
Indeed,	using	(21.1)	and	(21.2)	Einstein's	"simple	calculation"	can	be	done	without	difficulties.	
	
	
	
	
Let	us	derive	formula	(17.1)	again	in	a	more	sophisticated	way.	For	the	transverse	velocity		𝒖′	 = 	 (	0	, 𝑢¡′	, 0	)	we	have	
according	to	(21.2)	
	

																												𝒖𝒚 	= 		
𝑢¡′

𝛾 · 1 + 𝑣 · 𝑢³′𝑐"
		= 		

𝑢¡′

𝛾 · 1 + 𝑣 · 0𝑐"
		= 	𝒖𝒚′ · 𝟏	–	

𝒗𝟐

𝒄𝟐
					

	
	 	

(21.5)	

(21.6)	

(17.1)					≡						(21.7)	



22.		Aberration	
	
	
The	formulas	of	the	last	section	hold	for	any	velocities		𝒖		and		𝒖§,	and	they	are	still	valid	for		𝒖 = 𝒄	,	the	speed	of	light.	
So	let	the	light	of	a	distant	star	arrive	intersecting	at	angle	𝛼		with	our	x-axis.	The	components	of	that	speed	are	
	

𝑢³ 	= 	−𝑐 · 𝑐𝑜𝑠	𝛼						,					𝑢¡ 	= 	𝑐 · 𝑠𝑖𝑛	𝛼							and							𝑢´ 	= 		0	
	
By	our	choice,		𝛼		is	an	acute	angle	for	stars	with	positive	x-values.	Following	formulas	(21.1)	and	(21.2)	the	velocity	of	
the	light	of	that	star	has	for	Red	the	components		
	

𝑢³′	 = 		
−𝑐 · 𝑐𝑜𝑠	𝛼	 − 	𝑣

1 + −𝑣 · (−𝑐) · 𝑐𝑜𝑠	𝛼𝑐"
	= 			

−𝑐 · 𝑐𝑜𝑠	𝛼	 − 	𝑣

1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐
		

	

	𝑢¡′	 = 		
𝑐 · 𝑠𝑖𝑛	𝛼

𝛾 · 1 + −𝑣 · (−𝑐) · 𝑐𝑜𝑠	𝛼𝑐"
		= 		

𝑐 · 𝑠𝑖𝑛	𝛼

𝛾 · 1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐
								

	
Of	course,			(𝑢³′)" 	+ 	(𝑢¡′)" 	= 	 𝑐"		holds	for	these	components,	too.		
	
For	Red	in	S',	the	light	from	this	star	builds	an	acute	angle		𝛼′		to	the	x'-axis	with		
	

𝒕𝒂𝒏	𝜶′	 = 	
𝑢¡′
−𝑢³′

	= 	

𝑐 · 𝑠𝑖𝑛	𝛼
𝛾 · 1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐

		

𝑐 · 𝑐𝑜𝑠	𝛼	 + 	𝑣
1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐

	
		= 	

𝑠𝑖𝑛	𝛼

𝛾 · 𝑐𝑜𝑠	𝛼	 + 	𝑣𝑐
	= 	

𝒔𝒊𝒏	𝜶
𝜸 · 𝒄𝒐𝒔	𝜶	 + 	𝜷

		

		
Einstein	preferred	in	his	publication	another	formula	:	
	

𝒄𝒐𝒔	𝜶′	 = 	
−𝑢³′
𝑐

	= 			
𝑐𝑜𝑠	𝛼	 + 	𝑣𝑐
1 + 𝑣 · 𝑐𝑜𝑠	𝛼𝑐

	= 			
𝒄𝒐𝒔	𝜶	 + 	𝜷
𝟏 + 	𝜷 · 𝒄𝒐𝒔	𝜶

		

	
Einstein	comments:	"Diese	Gleichung	drückt	das	Aberrationsgesetz	in	seiner	allgemeinsten	Form	aus."	Because	he	uses	
angle		𝜑 = 180° − 𝛼		instead	of		𝛼		his	cosine	values	have	the	opposite	signs.	In	the	special	case	of		𝛼 = 90°		we	have		
𝑐𝑜𝑠 ∝ ′ = 𝛽 = 𝑣/𝑐	.	For	the	difference		𝛿′		to	90°	degree	we	have		𝑠𝑖𝑛	𝛿′ = 𝑐𝑜𝑠	𝛼′ = 	𝑣/𝑐	.		
Until	1905	astronomers	used	the	'wrong'	formula		𝑡𝑎𝑛	𝛿′ = 𝑣/𝑐		resulting	from	the	'old'	way	to	add	velocities.	However	
for	small	angles	the	difference	between	those	formulas	is	far	less	than	what	can	be	observed.	
	
	
Using	the	goniometric	identity		

𝑡𝑎𝑛	
𝛼
2
	= 	

𝑠𝑖𝑛	𝛼
1 + 𝑐𝑜𝑠	𝛼

	

	
	
the	relation	between		𝛼		and		𝛼′		can	be	expressed	by	a	beautyful	symmetric	formula.	With	(21.1)	and	(21.2)	we	find	
	

tan
𝛼§

2
= 	

sin 𝛼§

1 + cos 𝛼§
	= 	

𝑢¡′
𝑐

1 − 𝑢³′𝑐

	= 	
			 𝑠𝑖𝑛	𝛼
𝛾 · 1 + 𝛽 · 𝑐𝑜𝑠	𝛼 			

1 + 𝑐𝑜𝑠	𝛼	 + 	𝛽
1 + 𝛽 · 𝑐𝑜𝑠	𝛼	

		= 		
𝑠𝑖𝑛	𝛼

𝛾 · 1 + 𝛽 · 𝑐𝑜𝑠	𝛼 + 𝑐𝑜𝑠	𝛼	 + 	𝛽
		=		

	

= 		
𝑠𝑖𝑛	𝛼

𝛾 · 1 + 𝛽) · (1 + 𝑐𝑜𝑠	𝛼
		= 	

1
𝛾 · 1 + 𝛽

·
𝑠𝑖𝑛	𝛼

1 + 𝑐𝑜𝑠	𝛼
		= 		

1 − 𝛽"

1 + 𝛽
· 𝑡𝑎𝑛	

𝛼
2
		=			

(22.1)	

(22.2)	



= 		
1 − 𝛽 · 1 + 𝛽
1 + 𝛽 · 1 + 𝛽

· 𝑡𝑎𝑛	
𝛼
2
		= 		

1 − 𝛽
1 + 𝛽

· 𝑡𝑎𝑛	
𝛼
2
		= 	

(𝑐 − 𝑣
(𝑐 + 𝑣

	 · 𝑡𝑎𝑛	
𝛼
2
	

	
So	we	get	
	

𝒕𝒂𝒏	
𝜶′
𝟐
	=

𝟏 − 𝜷
𝟏 + 𝜷

	 	 · 𝒕𝒂𝒏	
𝜶
𝟐
		= 	

(𝒄 − 𝒗
(𝒄 + 𝒗

	 · 𝒕𝒂𝒏	
𝜶
𝟐
	

	
	
Astronomer	"Red",	heading	towards	the	star	with	velocity		𝑣		observes	a	smaller	angle		𝛼′		than	his	fellow	"Black"	who	
sits	at	rest	relative	to	the	star	(or	has	a	minor	relative	velocity	to	it).	
	
'aberrare'	means	to	err	or	to	deviate.	A	legend	has	it	that	James	Bradley	became	aware	of	that	effect	in	1727	while	
riding	in	a	carriage	under	the	English	rain.	He	observed	the	rain	falling	more	and	more	in	front	the	faster	the	carriage	
drove.	By	a	finite	value	of	the	speed	of	light,	he	realized,	the	same	effect	should	show	up.	
	
The	speed	of	earth	orbiting	the	sun	is	about	30	km/s	.	If	the	position	of	a	star	is	perpendicular	to	earth's	velocity,	that	is	
	𝛼	=	90°,	the	calculation	gives	a	value	of	aberration	of	about	20	arc	seconds	:	
	

𝑡𝑎𝑛	
𝛼′
2
	= 	

(𝑐 − 𝑣
(𝑐 + 𝑣

	 · 𝑡𝑎𝑛	
90°
2
	≈ 	

300′000 − 30
300′000 + 30

	 · 1	

	

𝛼′	 = 2 · 	
𝛼′
2
	= 	2 · 𝑎𝑟𝑐	𝑡𝑎𝑛	

300′000 − 30
300′000 + 30

		≈ 		89°	59′	39.4"			

	
The	following	figures	(adapted	for	this	paper)	are	taken	from	the	book	"Spezielle	Relativitätstheorie	für	
Studienanfänger"	by	Jürgen	Freund	(	vdf	Hochschulverlag	Zürich	2004	).	On	the	left	it	shows	an	isotropic	radiation	
falling	radially	on	system	S.	The	right	figure	shows	the	same	radiation	as	observed	by	someone	moving	to	the	right	with	
speed		𝑣 = 0.9 · 𝑐	.	In	the	fast	system	S'	the	radiation	falls	in	with	greater	concentration	from	ahead,	as	the	rain	drops	
do	for	Bradley's	carriage	example:	
	

	
	

For	Red	in	system	S',	the	radiation	is	not	only	concentrated	in	the	forward	direction,	it	is	also	more	intense	due	to	
Doppler	shift	in	that	direction.	Instead	of	visible	light	you	might	be	hit	by	UV-radiation	or	by	x-rays	!	And	the	world	
'behind'	disappears	in	darkness	...	
	
Longitudinal	and	transversal	Doppler	shift	were	treated	in	the	first	section.	For	the	sake	of	completeness	we	will	study	
the	general	case	in	the	next	section.	 	

(22.3)	



23.		Doppler	Shift:	The	Universal	Formula	
	
	
Let	a	sender	S	move	with	velocity	𝑣		in	an	arbitrary	direction	relative	to	the	receiver	E.	The	sender	S		is	emitting	
radiation	of	frequency	𝑓(		as	measured	by	himself.	
	

	
	
E		will	receive	that	radiation	at	(in	this	case	reduced)	frequency	𝑓� 		for	two	reasons:	
	

a) Time	dilation	slows	down	the	oscillator	frequency	of	the	sender	by	the	well	known	root	expression	(as	seen	by	
the	receiver).	This	effect	does	not	depend	on	the	direction	of	relative	movement.		
	

b) The	increasing	distance	to	the	sender	stretches	the	wave	lengths	of	the	radiation	according	to	longitudinal	
Doppler	shift.	The	amount	of	this	effect	depends	only	on	the	radial	velocity		𝑣®À° 	= 	𝑣 · 𝑐𝑜𝑠	𝜑	.	

	
In	the	general	case	we	can	do	the	same	calculation	as	for	(1.4)	if	we	insert		𝑣®À°		for	𝑣		at	the	proper	position:	
	

𝑓� 	= 	 𝑓( ·
𝑐

𝑐 + 𝑣®À°
· 𝑟(𝑣) = 	 𝑓( ·

𝑐
𝑐 + 𝑣 · 𝑐𝑜𝑠	𝜑

	 · 1	–	
𝑣"

𝑐"
	= 	 𝑓( ·

1

1 + 𝑣 · 𝑐𝑜𝑠	𝜑𝑐
	 · 1	–	

𝑣"

𝑐"
		

	
or	

𝒇𝑬 		= 	 𝒇𝑺 ·
(𝒄𝟐	–	𝒗𝟐		

𝒄 + 𝒗 · 𝒄𝒐𝒔	𝝋
		= 		 𝒇𝑺 ·

𝟏
𝜸 · (𝟏 + 𝜷 · 𝒄𝒐𝒔	𝝋)

			

	
	
Doing	the	same	calculation	with	angle		𝜃	 = 	180° − 𝜑		we	get	a	minus	sign	in	the	denominator.	
	
What	about	the	special	cases	?		
	

• If		𝜑		equals	zero	sender	S	moves	straight	away	from	receiver	E	along	the	line	ES	.	Then	we	have		𝑣®À° 	= 	𝑣		
and		𝑐𝑜𝑠	𝜑 = 1	and	we	repeat	the	calculation	of	longitudinal	Doppler	shift	leading	to	(1.4).	
	

• For	𝜑	 = 	90°		the	sender	moves	at	right	angle	to	the	line	of	sight.	Then	we	have	𝑣®À° 	= 	0		and		𝑐𝑜𝑠	𝜑 = 0		
and	we	get	the	formula	for	transverse	Doppler	shift	according	to	(1.6)	or	(17.2).	

	
	 	

(23.1)	



24.		Four-Vectors,	Three-Vectors	and	Newtons	Second	Law	
	
	
	
A	powerful	tool	for	doing	calculations	in	STR	is	provided	through	the	use	of	four-vectors.	Time	coordinate	and	the	three	
spatial	coordinates	of	events	are	combined	to	one	vector	with	four	components:	
		

𝑋	 = 	 	𝑐 · 𝑡	, 𝑥	, 𝑦	, 𝑧	 = 	 (	𝑐 · 𝑡	, 𝑥	)	
	
Time	is	multiplied	by		𝑐		in	order	to	have	the	same	units	for	all	components.		𝑋		gives	us	a	position	in	4-space,	𝑋		is	the	
four-vector	of	position.	Deriving		𝑋		by	time	𝑡		is	not	a	useful	idea	because	time	differs	from	one	inertial	frame	to	the	
other.	The	only	distinguished	time	is	the	time	in	the	rest	frame	of	the	moving	object,	i.e.,	the	so	called		proper	time		𝜏		.	
Four-velocity		𝑉	is	therefore	defined	by	
	

𝑉	 = 	
𝑑
𝑑𝜏
	 𝑋 	= 	

𝑑
𝑑𝑡

𝑋 · 	
𝑑𝑡
𝑑𝜏

= 	𝛾 ·
𝑑
𝑑𝑡

𝑋 	= 	𝛾 · (	𝑐	,			𝑣	)	
	
Multiplying		𝑉		by	the	rest	mass		𝑚2		of	the	moving	body	we	get	the		four-momentum	
	

															𝑃	 = 	𝑚2 · 𝑉	 = 	𝛾 · 𝑚2 · (	𝑐	,			𝑣	) 	= 	 	
𝐸uvu
𝑐
	,			𝑝	 	

	
The	last	equation	is	based	on	(4.2)	and	(5.4).	So,		𝑝		is	the	STR	momentum	three-vector	!	
	
Further,		four-force		𝐹		is	defined	by	
	

													𝐹	 = 	
𝑑
𝑑𝜏
	 𝑃 	= 	

𝑑
𝑑𝑡

𝑃 · 	
𝑑𝑡
𝑑𝜏

= 	𝛾 ·
𝑑
𝑑𝑡

𝑃 	= 	𝛾 · (	
1
𝑐
·
𝑑𝐸
𝑑𝑡
	,			
𝑑𝑝
𝑑𝑡
	) 	= 	𝛾 · (	

1
𝑐
· 𝑓 · 𝑣,			𝑓	)	

	
where		𝑓		denotes	the	conventional	3d	force	vector.		
	
We	are	not	going	to	work	with	four-vectors	here.	Our	aim	is	to	show	which	relations	of	three-vectors	remain	valid	even	
in	STR.	The	spatial	part	of	(24.2)	shows	that	Newton's	second	axiom	of	mechanics	survives,	seemingly	unchanged:	
	

																𝒇 	= 	
𝒅𝒑
𝒅𝒕

	

	
(24.3)	needs	no	proof	but	gives	a	definition	of	force	𝑓,	as	it	did	before	in	Newton's	theory.The	adaptation	to	STR	is	
hidden	in	the	definition	of	STR	momentum.		
	
The	temporal	part	of	equation	(24.2)	shows	that	the	equation	of	power	(i.e.	the	rate	of	change	of	energy)	remains	
completely	unchanged:	
	

					
𝑑𝐸
𝑑𝑡
	= 	 𝑓 · 𝑣 	= 	 𝑓 ·

𝑑𝑥
𝑑𝑡
																or															𝑑𝐸	 = 		 𝑓 · 𝑑𝑥		

	
The	right	side	of	(24.4)	is	the	basic	definition	of	energy	as	performed	work	or	the	ability	to	perform	work.	
	
In	section	5	we	combined	(24.3)	and	(24.4)	to	calculate	the	relativistic	expression	of	kinetic	energy,	integrating	
	

									𝒅𝑬	 = 	 𝒇 · 𝒗 	 · 𝒅𝒕	 = 	
𝑑𝑝
𝑑𝑡
	 · 𝑣 	 · 𝑑𝑡	 = 	

𝑑𝑝
𝑑𝑣
	 · 	
𝑑𝑣
𝑑𝑡
	 · 𝑣 	 · 𝑑𝑡		 = 	

𝒅𝒑
𝒅𝒗

	 · 𝒗 	 · 𝒅𝒗			
	
The	result	(5.2)	of	that	calculation	became	independently	confirmed	in	section	18	.	
	
	 	

(24.4)	

(24.3)	

(24.5)	

(24.2)	

(24.1)	



Let	us	go	one	step	further:		Four-acceleration		𝐴		is	defined	by	
	

𝐴	 = 	
𝑑
𝑑𝜏
	 𝑉 	

	
By	definition,	the	formula		𝐹 = 𝑚2 · 𝐴		is	correct	in	STR	:		
	

𝐹	 = 	
𝑑
𝑑𝜏
	 𝑃 	= 	

𝑑
𝑑𝜏
	 𝑚2 · 𝑉 	= 	𝑚2 ·

𝑑
𝑑𝜏
	 𝑉 	= 𝑚2 · 𝐴	

	
	
	
The	representation	of	the	four-vector	𝐴		by	three-vectors	is	rather	complicated	in	general.	However,	the	calculation	is	
straightforward,	resulting	in	
	

																																	𝐴	 = 	
𝑑
𝑑𝜏
	 𝑉 	= 		 𝛾w · 𝑐j" · 𝑣 · 𝑎 · (	𝑐	,			𝑣	) 		+ 		𝛾" · (	0	,			𝑎	)	

	
With		𝐹 = 𝑚2 · 𝐴	,	(24.2)	and	(24.6)	we	get	
	

																								𝛾 · (	
1
𝑐
· 𝑓 · 𝑣,			𝑓	) 	= 	𝑚2 · 	𝛾w · 𝑐j" · 𝑣 · 𝑎 · (	𝑐	,			𝑣	) 		+ 		𝑚2 · 𝛾" · (	0	,			𝑎	)			

	
Taking	a	closer	look	at	(24.7)	we	notice	that	three-force		𝑓		is	not	necessarily	parallel	to	three-acceleration		𝑎		in	STR	!	
	
	
The	first	summand	on	the	right	side	of	(24.6)	and	(24.7)	disappears	if	acceleration	and	velocity	are	perpendicular	to	
each	other	(this	is	always	the	case	if	Lorentz-force	is	at	work).	Then	(24.7)	reduces	to	
	

𝛾 · (	
1
𝑐
· 𝑓 · 𝑣,			𝑓	) 	= 	𝑚2 · 𝛾" · (	0	,			𝑎	)	

	
and	hence		𝑓 = 𝛾 · 𝑚2 · 𝑎	.		So,	in	the	early	days	of	STR,	people	were	speaking	of	'transversal	mass'			𝛾 · 𝑚2	.		
	
If		𝑣		and		𝑎		are	parallel	to	each	other	we	get	from	(24.2)	and	(5.1)		
	

𝑓 	= 	
𝑑𝑝
𝑑𝑡
	= 	

𝑑𝑝
𝑑𝑣

·
𝑑𝑣
𝑑𝑡
	= 	 𝛾Ç · 𝑚2 · 𝑎	

	
The	same	formula	results,	of	course,	by	a	direct	calculation	starting	at	(24.7).	And	here	we	have	the	origin	of	the	
outdated	notion	'longitudinal	mass'	for	the	term		𝛾Ç · 𝑚2		.	
	
	
In	modern	text	books	on	STR	the	term	'mass'	exclusively	denotes	rest	mass		𝑚2	.	I	take	the	liberty	to	carry	on	using	the	
term	'dynamic	mass'	for		𝛾 · 𝑚2	.	After	all	it	is	a	conserved	quantity,	proportional	to	total	energy	and	hence	to	the	
inertia	of	the	object.	On	the	other	hand,	rest	mass	𝑚2		is	a	relativistic	invariant,	it	has	the	same	value	in	all	frames	of	
reference.	But	it	is	not	a	conserved	quantity.	
	
The	terms	'longitudinal	mass'	and	'transversal	mass'	however	are	definitively	obsolete.	
	
	
	
	
	 	

(24.6)	

(24.7)	



25.		Some	Remarks	on	the	Foundations	of	STR	
	
	
	
STR	is	the	only	possible	way	to	unite	the	principle	of	relativity	and	Maxwell's	theory	of	electromagnetism.	In	Maxwell's	
theory	electromagnetic	waves	are	spreading	through	empty	space	with	universal	speed	𝑐	in	all	frames	of	reference,	
independent	of	any	movement	of	the	observer	or	the	source	-	something	completely	incompatible	with	Newton's	
concepts	of	Absolute	Time	and	Absolute	Space.	Lorentz	tried	to	reconcile	Maxwell's	and	Newton's	theories	introducing	
a	'length	contraction'	and	a	'local	time'.	Till	1900	he	developed	a	great	part	of	the	mathematical	tools	for	the	yet	to	
come	STR.	
	
In	spring	1905	Einstein	recognized	Newton's	Absolute	Time	to	be	the	core	problem.	Well	aware	of	the	experimental	
facts,	Einstein	turned	the	problem	into	a	basic	principle	or	an	axiom.	The	former	problem	became	the	foundation	of	a	
new	theory.	His	analysis	of	the	simultaneity	of	events	detected	the	basic	phenomena	time	dilation,	length	contraction	
and	desynchronisation.	In	a	couple	of	weeks	he	and	his	wife	wrote	down	the	seminal	paper	on	STR	published	in	June	
1905.	In	the	same	way	Einstein	later	resolved	the	problematic	equivalence	of	inertial	and	gravitational	mass.	There	is	
no	reason	for	this	experimental	fact	in	classical	physics,	already	Newton	wondered	about	it.	Einstein	interprets	the	
problem	as	a	fundamental	fact,	and	based	on	this	new	axiom	he	develops	(on	a	long	and	laborious	path)	his	General	
Theory	of	Relativity.	
	
	STR	is	based	on	the	axiom	

				A1			The	vacuum	speed	of	light	is	a	universal	constant,	independent	of	the	state	of	movement	of	the	source.	
	
Classical	physics	knows	four	quantities	conserved	in	all	processes:	mass,	energy,	momentum	and	electric	charge.	STR	
affects	three	of	these	conservation	theorems;	only	conservation	of	total	electric	charge	is	unchanged.	
In	STR,	conservation	of	mass	and	conservation	of	energy	fall	into	one;	'conservation	of	dynamic	mass'	and	'conservation	
of	total	energy'	are	essentially	the	same.	Conservation	of	total	momentum	is	still	valid,	but	'STR	momentum'	differs	
slightly	from	momentum	in	Newton's	theory.		
Section	18	shows,	without	using	any	of	the	conservation	theorems,	how	STR	momentum	necessarily	has	to	be	defined.	
Section	19	shows	how	conservation	of	dynamic	mass	follows	from	conservation	of	momentum.		
Section	4	derives	the	definitions	of	dynamic	mass	and	STR	momentum	just	by	assuming	the	existence	of	a	velocity-
dependence	of	mass	that	makes	conservation	of	mass	and	conservation	of	momentum	true.		
	
As	a	matter	of	fact	all	three	of	Newton's	fundamental	laws	still	hold	in	STR	!	The	first	law	deals	with	a	special	case		
of	the	second	one	and	so	needs	no	separate	discussion.	The	second	law	says,	in	Newton's	original	formulation,	
𝐹 = 𝑑𝑝/𝑑𝑡	.	This	is	still	true,	with	some	refinement	in	the	definition	of	momentum	!	And	his	third	law	('actio	=	reactio')	
is	a	deep	insight,	in	a	realm	high	above	the	details	of	any	specific	theory.	
	
If	the	equation		𝐸 = 𝑝 · 𝑐		for	some	amount	of	radiation	is	taken	as	given	then	it	is	quite	easy	to	derive	the	equivalence	
of	mass	and	energy	from	conservation	of	momentum	(sections	10	to	12)	or	from	conservation	of	energy	(section	13).	
We	may	use	then	a	weaker	version	of	axiom	A1	to	derive	the	STR,	the	premise	of	the	independence	of	light	speed	from	
movement	of	the	source	can	be	omitted.		A1		is	equivalent	to	A2	&	A3,	if	we	define	
	
				A2			The	vacuum	speed	of	light	emitted	by	a	source	at	rest	is	an	universal	constant.	
	
				A3			Energy	and	momentum	of	electromagnetic	radiation	are	linked	by	the	equation		𝐸 = 𝑝 · 𝑐		.	
	
	


