A Fast Track to Relativity

In this paper we derive all of the results of the Special Theory of Relativity (STR) using a novel approach. This approach,
which we call "Fast Track to STR" is concise and exact. It starts with time dilation and Doppler effect, then derives the
addition of velocities formula and introcuces the "half speed" in STR. Equipped with that we derive the STR
formulations of conservation of mass and conservation of momentum, which in turn allow us to calculate the
relativistic expression of kinetic energy. All this is done on the first 6 pages.

In sections 7 to 19 we draw some important conclusions, show some old and a new proofs of the most popular formula
of physics and give alternative ways to derive the basic results of STR.

In section 20 we introduce, 'post festum', the Lorentz transformations in order to derive the seldom used general
formulas for the addition of velocities, aberration and Doppler shift. The last sections pay homage to Newton and give a
short discussion of the logical background of STR.

Several links to the online edition of my book "Epstein Explains Einstein" (EEE for short) lead to specific illustrations and
examples. What is missing are the relevant transformations of the electric and magnetic field. For this consult e.g.
https://www.relativity.li/en/maxwell2/max_00 en or
https://www.physastromath.ch/uploads/myPdfs/Relativ/STR with Four-Vectors.pdf
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1. Time Dilation and Doppler Shift

In the realm of acoustics two particular situations are distinguished:

a) The sender is at rest in the wave-propagating medium, the receiver is moving away with speed v from the sender.

The corresponding Doppler-formula is
c—v
(1.1)

fa = f—
b) The receiver is at rest in the wave-propagating medium, the sender is moving away with speed v from the receiver.

The corresponding Doppler-formula is
c

fr = fs (1.2)

c+v
In STR, the basic assumptions are that the speed of light ¢ is the same in all inertial frames, and, furthermore, that this
speed is independent of the movement of the sender. These basic assumptions are just what Maxwell's equations for
electro-magnetic waves imply. Unlike sound waves there is no special coordinate system for light waves in which the
medium for the wave propagation is at rest. There is no need for something like the 'Ether".

Since there is no distinguished coordinate frame only relative speeds can be measured. Then both of the above
situations should yield the same amount of Doppler shift. So something has to happen to frequencies if the sender and
the receiver are moving relative to each other. If frequencies are influenced by movement time itself must be influenced
by movement ! Time is the only quantity involved in the counting of the number of oscillations when the speed of wave
propagation has a fixed value. This means that the flow of time does not have the same speed in coordinate frames
moving relative to each other and we have to say goodbye to Newton's idea of absolute time !

Let us assume the existence of a function r(v) depending on relative speed v so that the following equation holds
At, = Aty -r(v)

At,, is a time interval measured in the moving system, and At is the corresponding time interval measured at rest.
r(v) cannot equal 1 for v # 0, formulas (1.1) and (1.2) are different.

We do not impose any restrictions on the function r(v) . Let us assume r(v) to be smaller than 1 forv # 0 (the text
could also be formulated for the other case without changing the outcome).

In case a) the receiver is moving, so his watch runs slower by the factor r(v). Therefore he will measure a higher
frequency, in his longer seconds he will count more oscillations. (1.1) has to be adjusted to

c—v 1

fr = fs- O]

Cc

In case b) the receiver is at rest, and the clock of the fast-moving sender runs slow. Hence the frequency of the sender
is diminuished and the receiver measures a lower frequency. (1.2) has to be adjusted to

fr = fs- r(v)

ct+v

In STR both of the above formulas should yield the same amount of Doppler shift. Therefore we get

c—v 1 _ c
c rw) cH4v )
or
(c-v) (c+v) _ c? - v? v?

=1-—
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The factor r(v) turns out to be

(1.3)

The negative solution might be interesting for a science-fiction-story ...

Replacing r(v) by (1.3) we get the correct Doppler shift formula in this special situation of relative speed along the line
of sight between receiver and emitter. The longitudinal Doppler shift is controlled by the formula

_ ¢ _ (c-v)-(c+v) _ (c-v)
fR—fs‘C+v'7'(V)—fs‘C o 2 =fs- c+v) (1.4)
_ c—v 1 c—v B (c-v) 1
fR_fS' P 'm_f.?' C (C—U)'(C+U) _fS' (C+'l7) (1.5

with v denoting the speed of increasing distance of sender and receiver. In both cases we come to the same result.

The principle of relativity, denying the existence of a unique ether system, yields immediately the formulas of time
dilation and longitudinal Doppler shift.

Graphic representations of the three Doppler formulas and a beautiful application of the longitudinal Doppler shift are
presented in https://www.relativity.li/en/epstein2/read/d0_en/d6_en . In that publication the sign of relative speed v
is positive if sender and receiver are approaching each other and thus the plus and minus signs are reversed.

Now, consider a sender moving at right angle to the line of sight between sender and receiver. Actually there is no
change of distance between sender and receiver, but the senders frequency as seen by the receiver is lowered because
of time dilation. Therefore we have

(1.6)

This effect is called transversal Doppler shift. It is a purely relativistic effect unknown in 'classical' physics. It is much
harder to demonstrate the transversal Doppler shift by experiments than the longitudinal Doppler shift, because the
effect depends on the square of the small number v/c and not on v/c itself.

Formulas for the general case of Doppler shift are presented in section 23.



2. Addition of Parallel Velocities

We can use the formula of longitudinal Doppler shift to derive the STR formula for the addition of parallel velocities. The
idea comes from Hermann Bondi ("Relativity and Common Sense", 1962, new edition by Dover Publications 1980) and is
also presented by David Mermin in "It's About Time" (Princeton University Press 2005).

Let B be moving in positive xa-direction of A with velocity v as measured by A, and let C be moving in positive xa-

direction of B with velocity u as measured by B. As usual both x-directions should merge into one. Now let C emit
radiation of frequency f. directed to B and A. Following (1.4) B is receiving that radiation at a frequency of

c—-u

fs = “fe

ct+u

The radiation passes B with frequency fz and, somewhat later, reaches A who will measure the frequency

f cC—- 7V f cC—-UV cC—Uu f
A7 Je+v BT e+ c+u ‘¢

Let z be the yet unknown velocity of C as measured by A . (1.4) tells us

c—- Z

fa = ctz fe
Comparing both terms for f, and solving for z we get
v+ u 2.1)
zZ = —9u 2.1
1+ 2

If both v and u are small compared with ¢, then (2.1) hardly differs from z = v + u, the result of the 'classical’
addition of parallel velocities following Galileo and Newton.

Inserting ¢ for u or v (or for both of them !) results in z = ¢ . Obviously, the basic assumptions of STR do not lead to
self-contradictions !



3. 'Half the Speed' and 'Twice the Speed' in STR

Now let us ask for the speed w that, if added to itself according to (2.1), yields a given speed v :

w+ w
V= ———s
1+ 27

c

We shall call w 'half the speed' of v in STR, and v is called 'twice the speed' of w. Solving for w we get

v

we———— (3.1)
1+ J1-%
(&

If v issmall compared with ¢ the root term comes close to 1 and hence w comes closeto v/ 2, the 'classical'
answer. The root term is always smaller than 1, so w is always somewhat greateras v /2.As v approaches the
speed of light w approaches the value v !

Jerzy Kocik shows in the American Journal of Physics (Vol. 80, Nr. 8, p. 737f) how to add velocities in STR with ruler and

compass. Triggered by his publication my friend Alfred Hepp and me have worked out a small paper promoting the
usage of 'half the speed' in STR: https://www.physastromath.ch/uploads/myPdfs/Relativ/Relativ_06_en.pdf

We will use this idea of 'half the speed' in the next section to derive the STR terms for 'dynamic mass' and 'momentum’.

Equation (3.1) will help to avoid some annoying algebra. And in section 8 we will derive a new result from (3.1):
Multiplying the STR term of momentum by half the speed you get the STR term of kinetic energy !

Speed w creates a third point of view in all situations where we have two inertial frames S and S' with relative speed v .
If the inertial frame T is moving with speed w relative to S, the constellation is completely symmetric as observed from

the system T : System S is moving to the left with speed —w while System S' is moving to the right with speed w .



4. The Perfectly Inelastic Collision

In coordinate frame S let two identical bodies move in a perfectly symmetric way towards each other. We allow their
identical masses to depend on their velocities, but they do not have to do so. Their momenta are given by

my, " w and m,, * (—w)

Total momentum is zero. So, after the perfectly inelastic collision, we have a single mass M, at restin frameS.
Now let us observe this collision in a frame S' moving with speed —w as seen fromS.InS' the second body is at rest
while the first moves with 'twice the speed' v . After the collision the single mass M,, moves with speed w inS'".
Conservation of momentum and conservation of mass are the core credos of physics. The corresponding equations for
the collision as observed in frame S' are

| m,v = M, -w

I1 m, + my = M,
Substituting M, in the first equation by using the second and replacing w according to (3.1) we get

v

VZ
1+ 1_C_2

myv = (my, +mg) -w = (m, + mg) -

Dividing by v we find the definition of ‘dynamic mass' :

my
m, = —— (4.1)
)
1 - C_Z
Hence, relativistic momentum is given by
my-v
p=m,v = 2 > (42)
1%
1 - ﬁ

Only these definitions make equations | and Il come true ! Conservation of mass only holds for 'dynamic masses', and
the definition of momentum needs an additional relativistic twist.

w = v/2 would imply m, = my and M,, = My, = 2-m, . The 'slight' correction (2.1) brings to the formula for the
addition of velocities has a deep impact !

This derivation is presented by Max Born in his influential book "Die Relativitdtstheorie Einsteins" (first edition 1920).
The above presentation is much simpler thanks to the 'half speed' formula (3.1).

The content of sections 11 and 18 can be found in Born's book as well. In section 18 we will present his derivation of
relativistic momentum that is independent of conservation of mass and of conservation of momentum !



5. Total Energy, Kinetic Energy and Rest Energy

We follow the standard path to calculate the relativistic expression for kinetic energy; that is we are going to calculate
the work needed to accelerate a body from v, = 0 to the final velocity ve,q. With

d
dE = F- ds and F = d_zt) ( Newton's second law )
we get
dp dp dv dp ds dp
dE = —+ds = ——+'ds = ——+dv = —v-d
ac C T a P T w A T w N
and hence
£ j‘”end dp d
kin . dv v
From formula (4.2) of the last section we find
3
d_p = Mg " 1_ 17_2 -z 5 1
dv 0 c? (5.1)
and, together with (4.1), the integral yields
1
Egin = my ¢* | —— -1|=m,,, ¢ - my-c = Am-c? (5.2)
1- vendz
c2

Performing work on m or supplying energy to m results in an increase of mass according to
AW?Y = AE = Am - c? (5.3)

Energy and mass can be converted into each other. The rest mass m, corresponds to the rest energy E, of amount
my - ¢? , and total energy is given by

Erpe = Eo + Eggn = My 2 = —o .
tot = Eo + Epin = My, ¢c* = > 4
v
1__
Z
c

2 (5.4)

Conservation of energy and conservation of dynamic mass melt into the same theorem. By choice it can be formulated
as conservation of energy or conservation of dynamic mass.

Nowadays there are many examples illustrating the conversion of mass into energy or vice versa. Compare the
corresponding chapters in 'EEE":

https://www.relativity.li/en/epstein2/read/f0_en/f3 en

https://www.relativity.li/en/epstein2/read/f0_en/f4 en

https://www.relativity.li/en/epstein2/read/f0_en/f5 en




6. Total Energy, Momentum and the Pythagorean Theorem

Let us subtract the squared rest energy from the squared total energy:

2. .4
my“-c 1
2 2 _ 0 2. 4 _ 2., 4 —
Eiot” — By = ——5 — mp* - ¢c* = my“-c* s — 1=
1-2 1-2
c? c?
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1 - (1 - 2) 2, .2
2 my® - v
= my? - c* = = my?-c* £ | = — c? = p?-c?
1-2 1-2 1-2
c? c? c?
We get the amazing equation
2 2.2 _ 2
Eo” + p°-c® = Eyp (6.1)

Rest energy, momentum multiplied by the speed of light and total energy form the sides of a right triangle. In STR
energy and momentum are similarly connected as time and space. If you are familiar with Epstein diagrams or with 4-
vectors this is a simple fact. For more details see https://www.relativity.li/en/epstein2/read/e0_en/e4 en .
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For the angle ¢ in this triangle we find
] p-c m,-v-c v
sin = = —=—-= 6.2
W= = a = =h (6:2)
and
(@) = =2 : (6.3)
cos(p) = = = — .
Etor Y

These are the definitions of the traditional terms 8 and y .



7. Total Energy, Momentum and the Full Speed

We may divide formula (5.4) by formula (4.2), or we can simply state

v

Eror _ D
c? v

Or we read from the picture in section 6
p-cC ) v
=sing = —
Etot

Total energy, momentum and speed v are connected by the equation

P-c® = Ey v (7.1)

Formula (7.1) allows e.g. to calculate the speed of the center-of-mass system of some particles from total momentum
and total energy of these particles.

8. Kinetic Energy, Momentum and 'Half the Speed'

Let us start with (6.1):

my2-ct = me?-ct + m,? v?-c?

Dividing by ¢? and rearranging the terms we get

(mvz - mOZ) ¢t = mv2 - v?

Dividing by (m,, + my) we get the expression (5.2) for kinetic energy on the left side:

2

m,, 2 m, 2
= Y E V" = M,V = M, VW

mv+m0.v T 14+ 2
m, 1+ 1——2
c

where w stands for 'half the speed' of v (see section 3). We get a pretty formula connecting kinetic energy,
momentum and half the speed:

(m, —m,) c? =

Egin = my-v-w=p-w (8.1)

The same formula holds in 'classical' physics ! There we have

N
3
S
I
3
<
N <
Il
S
S

Eyin =
It is far from being obvious that the relativistic expression for kinetic energy approaches the classical term if the
velocities are small compared with the velocity of light. Obviously, the terms for momentum and half the speed do so,

and hence does their product, too.

I am not aware of a text book presenting (8.1).



9. Momentum and Energy of Light Particles

(5.1) implies that no finite amount of energy can accelerate a body of some rest mass to the speed of light. Since light
quanta or photons move with that speed, their rest mass has to be zero. Nevertheless they carry energy and
momentum. Equation (6.1) says for a particle with my = 0

0 +p*-c? = By’
and hence

E =Ei = Egin =P C (9.1)
We can deduce (9.1) also by inserting the speed of light ¢ for v in (7.1) or by inserting ¢ for half the speed of c in (8.1).
Together with Planck's formula E = h - f we get the important relations

E=h-f=p-c (9.2)
and

= —h 9.3
=— == (9.3)

Radiation of frequency f consists of a stream of particles transmitting energy h - f and momentum p=h-f /c .
Taking this (at the time revolutionary) point of view Einstein explained in 1905 all the confusing phenomena of the
photoelectric effect.

It was well known since 1884 that light carries momentum and energy. John Henry Poynting derived the details starting
from Maxwell's equations, and he proved (9.1) to be true for electro-magnetic radiation.

A beautiful illustration of light pressure give the comets: Their tails always turn away from the sun. When the comet has
passed perihelion and moves away from the sun its tail flies ahead of it | The pressure of sun light blows the ions and
dust particles away from sun. The following picture shows both the ion tail and the dust tail of comet Hale-Bopp. The
heavier dust particels are harder to accelerate, and so the tail splits into different parts:

http://astronomy.swin.edu.au/sao/imagegallery/Hale-Bopp.jpg (1997)



10. E =m - c? by Conservation of Momentumand E =p - ¢

Figure a) shows a body of rest mass m, and two quanta of energy moving symmetrically towards that body. Each
quantum carries momentum p and energy E = p - ¢ . After absorbing those quanta the body stays at rest due to
symmetry or conservation of momentum. His energy is increased by AE = 2 - E , and his mass may be m; :

a) before . L) bejore

.

- - .’.. -3
= P &
wvvf:/v’ m, M,\P,vv\ f’.‘_’"’:’i_‘(_ m, .:z‘?’:\;‘.‘l_

aflvwads aflr waids ?
u

Figure b) shows the same process in a coordinate frame moving with speed u downwards. The bodies speed is u©
before and after the absorption. The quanta fall in by an angle « to the horizontal line. They still move with speed c,
and so we have sin(x) = u/c.The momenta p’ and ¢’ may slightly differ from p . Conservation of momentum in
the direction of u means

u
Y My u =y, my-u + 2:p-sin() =y, -my-u + 2-p’-;

Dividing by u (or by y, - u ) we have

!
1
m; = my + 2-p—-—

¢ Yu

That equation holds for all velocities u , u may be as small as you like. Hence the equation holds in the limit u — 0,
too! But if u approaches zero, p’ approaches p (and y, approaches 1), and we get

_,P _, E_AE
M=o = c 2 ¢2
or
AE
Am = — (10.1)

You might as well drop the terms printed in red for very small velocities u !

Einstein published this magnificent derivation in 1946. It is to be found in "Out of My Later Years", Random House 1993,
section 14



11. E =m - c? by Conservation of Momentumand E =p - c

Figure a) shows two identical particles with rest mass m, moving towards each other with speeds v and —v . Total

momentum is zero, so O, the center of mass, is at rest. Both particles have the same distance to O.

Mo, v ™y ,-V
“\y —@)—> Cl) < Aro-
M4'O # Mo,"v
b) rreTr o
2 0 2% ey
%
My ,0 Mz,o
L () t-y

Figure b) shows the state of our system after the emission of a flash with energy E and momentum p =y -mg v
by the left particle. At time At = l/c after that emission, the flash is in O. The left particle is at rest now, having the

mass m, . At that time the right particle is in distance
l I — At - 1 (1-9)
—x =]l-At-v=1l—-v=1-(1=2
c
to the center of mass O. Hence the equation of equilibrium is

Loy =y oy @=2) = yomyel(1-2)

The dynamic mass of the flash is of no influence to the balance because he is at O in that very moment.

We divide by | and use the equation E=p:-c=y -my-v-c toget

= y-mg — —

v 14
c c?

my =Y Mg _V‘mo'z =Y -my —

If the energy of a body is reduced by E the dynamic mass of that body is reduced by CEZ 1

(11.1)

In reversed time order that means that the supply of some additional energy E increases the dynamic mass by the

amount CEZ . Figure c) shows the state of our system after the absorption of the flash (with its momentum and energy)

by the right particle. The particle is at rest now, and its mass is

E

m, =)/-m0+c—2

Hence we get

E E E AE
m; —m; = (V'mo +C—2>—(Y‘mo ——> =25 ==

(11.2)



In the beginning, both particles had the same rest mass and the same dynamic mass. After the transmission of energy
and momentum the particles mass (both rest mass and dynamic mass ...) show a difference of AE/c?.

Energy and dynamic mass are convertible. The factor of conversion is the square of the speed of light:
AE = Am - c? (11.3)

Dividing the equation for conservation of energy by c? we get the equation for conservation of dynamic mass.
Rest mass is not conserved, our calculations show

E E
my+m, = (y-mo —§>+<y-m0 +c_2> =2-y-my > 2-m,

In two steps the kinetic energies of the particles are converted to additional rest mass in the above experiment.
Of course, total energy and total momentum are the same in all states of the experiment.

The basic idea to use the stability of the center of mass when particles within a closed system exchange energy and
momentum comes from Einstein. He uses a box around the particles to force them to come to rest again, which needs
some additional discussions, because there is no such thing as a rigid body in STR.

Francesco Cester finally got rid of that box in his book "Newton and Relativity" (Books on Demand, 2018). He works
then with low-speed-approximations that are well justified if you have the exchanche of some photons in mind. But
with that approximations the difference between rest mass and dynamic mass disappears.

The actual section is a enhanced version of Cester's presentation. It shows, by the way, that conservation of dynamic
mass is a consequence of conservation of momentum.

You may omit all the y-s in the above derivation, arguing that the velocity v is allowed to be as small as you like. Then
you have another derivation of AE = Am - c? that does not presuppose any relativistic findings about 'dynamic mass'
and 'relativistic momentum'. However, you will miss then the important point that AE corresponds in general to an
increase in dynamic mass and not in rest mass. An increase in rest mass can show up in special situations.



12. E =m-c? by Conservation of Momentumand E =h- f

A body at rest in system S with mass m, simultaneously emits in opposite directions two quanta of radiation ( both
with energy h - f ). Their momenta add up to zero, and so the body stays at rest in system S . The body may have rest

mass m, after the emission.
Let be a system S' moving along the path of the emitted quanta with relative speed v as measured by S. The emitting

body has speed v in System S' before and after the emission. Respecting the equation of conservation of momentum in
S'and using (4.2), (9.3) and the Doppler shift formula (1.4) we get

me-v.  myv +h'f c+v h-f c—v
z 2 c Jec=v T ¢ Jec+v
- fw J

Rearranging this equation and doing some algebra we find

v 1%
1+E_ 1—E _
v 1%

1—; 1+E

Dividing by v we get

Am = 2-h-f/c* = AE/c? (12.1)

Radiating away the energy AE reduces the rest mass of the body by AE / c?.

This calculation was stimulated by the book "Newton and Relativity" by Francesco Cester (Books on Demand, 2018).

Cester himself refers to an article of Fritz Rohrlich in the American Journal of Physics (Nr. 58 of April 1990). Rohrlich
does the calculation by using the acoustic Doppler formula (1.1) instead of (1.4). This is justified by the fact that v may
be as small as you like. Because of this approximation Rohrlich draws the wrong conclusion that the emitted energy is
the same in both frames of reference.

However, the relativistic calculation shows that AE' = AE -y . It's exactly this result Einstein uses in his late 1905 paper
entiteld "Ist die Tragheit eines Kérpers von seinem Energieinhalt abhangig?". We will present his line of arguments in
the next section. He uses conservation of energy instead of conservation of momentum.



13. E =m - c? by Conservation of Energyand E = h - f

In september 1905 Einstein published an addendum to his seminal STR paper, entitled with "Ist die Tragheit eines
Korpers von seinem Energieinhalt abhdngig?". Based on the conservation of energy he gives the first of his derivations
of the formula E = Am - c2. Our presentation is a little bit simpler, we let the direction of relative speed coincide with
the direction the energy quanta are emitted. So we can use the formula (1.4) for the longitudinal Doppler shift.

Let be the same situation as in section 12 : A body at rest in system S with mass m, emits simultaneously two quanta of
radiation, both with energy L/2 . After emission the body's mass is m, . Since the momenta of the emitted quanta add
up to zero (or due to a symmetry argument ...) the body stays at rest in frame S.

In the rest frame S of the body conservation of energy means E, = E; + L
Now let be a system S' moving along the path of the emitted quanta with relative speed v as measured in S. The

emitting body has speed v in system S' before and after the emission. Respecting conservation of energy in S' and
using (9.3) and the Doppler shift formula (1.4) we get

. \/(c+v)+\](c—v) =E1,+%‘<(c+v)+(c—v)>=E1,+L.1_

2 (c—v) (c+v) c? — p?
1-=

Hence

By —Ex) = (Ey—E)) = (B —Eo) = (B —Ep) = L+ | —=—=~1

The interpretation of (E," — E,) is kinetic energy K,' of the body in system S' before the emission of energy, and
(E,' — E,) is kinetic energy K;' of the body in system S' after the emission of energy. The difference of these kinetic
energies is given by

v? 3 v* 15 v°

Z'C—2+§'C—4+E'C—6+ +(—1)>

There is a loss of kinetic energy although the velocity of the body remained the same ! This implies that the emission of
energy goes along with a decrease in mass. Neglecting the terms of higher order we find for small velocities v (and v is
allowed to be as small as you like !)

v?
2

or Am = L/ c?

N| =

2
—(my—m Y = L.
= (mg —my) -
Einstein writes: "Gibt ein Kérper die Energie L in Form von Strahlung ab, so verkleinert sich seine Masse um L / c2.
Hierbei ist offenbar unwesentlich, dass die dem Kérper entzogene Energie gerade in Energie der Strahlung libergeht, so
dass wir zu der allgemeineren Folgerung gefiihrt werden: Die Masse eines Korpers ist ein Mass fiir dessen Energie-
inhalt."



14. Length Contraction

Let the coordinate systems of "Red" and "Black" move against each other with velocity v respectively — v . Let as usual
their x-axes fall together and their y- and z-axes be parallel, and let v be parallel to the x-axis.

Black marks two points A and B along his x-axis and measures their distance Ax with his yard stick or with a clock at A
and a mirror positioned at B. Then, Black measures (with two synchronized clocks) the time At it takes Red to cover the
distance from A to B. Now Black calculates their relative speed v = Ax / At .
How will Red measure the distance between A and B on Black's x-axis ? First, Red has to measure the relative speed v of
the reference frames in the same way as Black did: Red measures (with two synchronized clocks) the time it takes for
the point A to cover a well known distance on his x'-axis. For symmetry reasons, Black and Red agree on the absolute
value of v | Second, Red measures the duration At’ of his flight from A to B. Finally Red calculates Ax' = v - At'. So we
have

Ax Ax'

ATV

For distances in the direction of relative speed we find, using the time dilation formula (1.3)

(14.1)

Black measures the rest length or the eigen length of the line segment AB. The rest length always is the longest to be
measured.

Length contraction or Lorentz contraction is an immediate consequence of time dilation !
Fast watches are running slow, and fast yard sticks are becoming short.
If Newton's Absolute Time must die then his Absolute Space must share the same fate.

Measuring lenghts in directions perpendicular to relative speed is not affected by length contraction ! Epstein's
argument goes as follows: If there were something like transverse contraction the track width should shrink with
increasing speed of the train - as seen from the train system. As seen from the track system the wheel gauge of the train
should shrink with increasing relative speed. So the track would be too wide and too narrow at the same time, and that
is impossible. Hence there is no such thing as 'transverse contraction':

Ay' = Ay and Az = Az (14.2)

Compare the corresponding chapters in 'EEE":

https://www.relativity.li/en/epstein2/read/b0_en/b3 en
https://www.relativity.li/en/epstein2/read/b0_en/b4 en
https://www.relativity.li/en/epstein2/read/b0_en/b5 en




15. Desynchronisation

Clocks in different frames of reference do not tick at the same rate, hence it does not make sense to try to synchronize
them. However, it is possible to synchronize clocks resting in the same frame. Doing this means to define time in that
frame ! More details about that in https://www.relativity.li/en/epstein2/read/b0 _en/bl en.

Now let Black synchronize his clocks in his system S (t,x,y,z), and let Red do the same in his system S' (t',x',y',z'). Then
both know their own clocks to run synchronously - and both observe that the clocks in the other system are
desynchronized in a very specific way !!

For Black, two clocks in Red's frame separated along the x'-axis by the eigen distance Ax’ are desynchronized by

' ;v
At = —Ax" - C_Z (151)
or

le = —pax' 2
At'-c = —Ax p (15.2)

The factor c leftside in the second formula merely converts time intervals into distances. Therefore, desynchronisation
is proportional to the eigen distance of the clocks along the direction of relative speed and to the quotient of vand c.
The minus sign says that clocks that are in an ahead position fall back in time (as seen by Black !). No wonder, these
clocks did run away from the sync pulse ... see https://www.relativity.li/en/epstein2/read/b0_en/b6_en.

For Red however all of his own clocks are perfectly synchronized.

The starting point of Einstein's analysis of time was to realize that two events A and B occure simultanously for one
observer, while A happens before B for another and B happens before A for a third one ! The statement "these two
clocks run synchronously" is not an objective fact given for all observers, but rather a statement that may be true in
some frame of reference and false in another. "It's About Time" is the title of Mermin's beautiful book on STR ...

A short derivation of the above formula is presented on https://www.relativity.li/en/epstein2/read/b0_en/b6 _en .

Desynchronisation is the third basic phenomenon STR introduces for measurements of time intervals and space
intervals (the others are time dilation and length contraction). Measurements in STR without regarding
desynchronisation would quickly lead to contradictions. How is it possible that everybody sees the clocks of the others
running slow? How does one avoid the chain of inequalities At' < At < At’ ?? Many of the innumerous
'falsifications' of STR are based on this logical short circuit.

It is necessary to take into account the desynchronisation of a set of fast clocks if you want to combine all
measurements in two different frames of reference without contradictions. Unfortunately most of the text books avoid
the topic. The next section presents a sample problem to show precisely how time dilation, length contraction and
desynchronisation work together for complete and consistent relative measurement.



16. Sample Problem for STR Kinematics

The following sample problem shows clearly how time dilation, length contraction and desynchronisation together give
a complete picture about measurements in different frames of reference.

In Black's laboratory there is a pipe of 12 m length at rest. The pipe is equipped at both ends with detectors/clocks. Now
let a particle fly with velocity v = 0.8 - ¢ through that pipe. The rest frame of the particle is called the Red system. Let
us answer the following questions:

oV hkwWwNE

What does Black say about the time it takes the particle to travel through the pipe ?
What does Black say about the corresponding time interval in Red's system ?

How long is the pipe as seen by Red ?

What does Red say about the time interval it takes the pipe to fly over the particle ?
What does Red say about the time passing by on each of Black's clocks during that flight ?
What is Red's explanation of Black's time measurement ?

Most text books carefully avoid asking questions 5 and 6. Without introducing desynchronisation question 5 causes
much confusion and question 6 cannot be answered at all.

However, all of the above questions are easy to answer. For short we write V for the well known root term

A .

2

v
1—C—2 =+41-0.82 = 0.6

Time is distance divided by velocity: At = Ax/v = 12m/(0.8-3-108m/s) = 50ns

Due to time dilation Red will measure a shorter duration: At' = At-v =50ns-0.6 = 30 ns

Red sees the pipe as length contracted: Ax' =Ax-vV =12m-0.6 =7.2m

Time is distance divided by velocity: For the flight of the pipe over Red with speed v it takes

At' = Ax' /v = 72m/(0.8-3-108m/s) = 30ns

Black and Red are in complete agreement about Red's measurement !

Black's fast clocks tick slow as seen by Red. During the 30 ns passing on Red's clock, on each of Black's clocks
passes the time At = At'-vV = 30ns-0.6 = 18ns !l

However, Red can calculate the time Black measures in this experiment. Black's clocks are (as seen by Red)
desynchronised by At = Ax-v/c? = 12m-0.8/(3-108m/s) = 32 ns. Black's rear clock is 32 ns
ahead ! Together with the 18 ns of the 'actual’ duration Black will measure 50 ns using his two clocks
positioned at both ends of the pipe.

Black needs two distant clocks for his measurements, one at each end of the pipe. Their synchronization is no objective
fact given to all observers ! Both Red and Black are able to calculate the results of the measurements of the other. Their
calculations are in complete agreement with the effective measurements. The measured values differ, but they are not
contradictory. The values are 'relative', but not arbitrary.



17. Transverse Velocities and Transversal Doppler Shift

Let the inertial frames of "Red" and "Black"” move against each other with relative speed v, with their axes oriented as
usual and v being parallel to the x- and the x'-axes.

In Red's frame S' (t',x',y',z') an object is moving with speed u’ along the y'-direction. How calculates Black the y-
component u of the velocity that object has in his frame S (t,x,y,z) ?

v2

We have u = Ay/At , u' = Ay'/At' and Ay = Ay'. Moreover, for Black holds At' = At [1- =

Hence we get

_ Ay 8y

= =u- [1-— 17.1
At At v (17.1)

For Black, the transverse velocity of the object is slowed down by the well known root factor. All processes are slowed
down in Red's world as seen by Black ! Let us look back to the transversal Doppler shift in this context:

Red crosses in some distance Ax the x-axis of Black with velocity v in y-direction. For the moment the distance of Red

and Black does not change. But any oscillator in Red's frame undergoes time dilation as seen by Black. If Red is sending
in his frame with frequency f' Black receives waves with frequency

(1.6) = (17.2)

Once again, this is the formula for the transversal Doppler shift. For Black all processes in Red's frame appear delayed ...

... and for Red things are just the other way round !

We will use formula (17.1) for transversal speed in the next section to derive the STR expression of momentum with a
absolute minimum of assumptions.



18. Derivation of Relativistic Momentum Based on a Minimum of Assumptions

In section 4 we derived the STR formula of momentum striving for conservation of momentum and conservation of
mass. The derivation presented in this section neither assumes conservation of mass nor conservation of momentum.
The equation for the momenta is given by the symmetry of the arrangement.

The same presentation can be found at https://www.relativity.li/en/epstein2/read/e0_en/el en orin the book "Die
Relativitatstheorie Einsteins" of Max Born (first edition 1920, enhanced editions 1964 and 1969).

The identical twins Peter and Danny ( Epstein's nephews ... ) exchange completely symmetric punches standing on
platforms of two Einstein trains :

Copyright © 2000 Lewis C. Epstein, Relatiity Visualized

The relative speed of the trainsis v, both fists have the same rest mass m, and both young men are punching with
the same speed u transverse to the velocity of the train (as measured by themselves!). Due to symmetry both
momenta of their fists in direction of their punch add up to zero :

py(Peter) = —p,(Danny)

For Peter the transverse velocity u' of Danny's fist is slowed down following (17.1). He wonders why Danny could hit
him so hard by his slow hand. If Danny is not hiding some additional mass in his fist we have to suspect mass might
depend on relative speed. So, Peter writes down the following equation for the momenta in the y-direction:

my U = — My u’ (181)

This holds for arbitrarily small velocities u ! So it is true in the limit of u’ — 0. Then we have u = 0, m,, turnsinto
my, My, into m, and we get the equations (4.1) and (4.2) :

m, = —— = Y- my and P m, v =y -mgy v (18.2)



19. Conservation of Momentum Implies Conservation of Dynamic Mass

In section 18 we derived the formulas (4.1) and (4.2) of dynamic mass and STR momentum based from nothing else
than time dilation. We did not use conservation of momentum nor conservation of any type of mass. In this section we
deduce conservation of dynamic mass from conservation of momentum. The line of arguments and the figures are
taken from "The Wonderful World of Relativity" by Andrew M. Steane (Oxford University Press 2011) :

(@) (b)
Before Before i
M ’ M
After After
n, ) b - ;2/: g
Vi . Va

Figure (a) of the figure shows a mass M at rest, disintegrating into two pieces with rest mass m; and m, . The pieces
will fly into opposite directions due to conservation of momentum. Let the velocities v; and v, be horizontal. Figure
(b) shows the same disintegration as observed in a frame moving with speed u downwards. With (18.2) conservation
of the vertical component of momentum means

M-u-y, =my-u-yy + my up,
Dividing by u we get

M-y, = m vy, + my-Vy,

The equation is true for arbitrarily small values of u . In the limit u —» 0 we get

M =mq -y, +myy, (19.1)

(19.1) expresses conservation of dynamic mass. Rest mass is not conserved, the values of y,, and y,, are greater than
1;,wehave M >m; +m, .

Still following Andrew M. Steane we rewrite equation (19.1) :
M=m +my (Yp,—1) + my + my-(y,, — 1) (19.2)

On the right side, after the splitting, total dynamic mass is composed of the rest masses and two small additional
masses. Multiplying (19.2) by c¢? turns conservation of dynamic mass into conservation of total energy:

M-c* =my-c2+my-c® (y,,—1) + my-c* + my-c*-(y,, — 1) (19.3)
On the right side, total energy is given by the sum of the rest energies and the kinetic energies. If you accept the idea of
rest energy this argument provides another derivation of STR kinetic energy. No forces, no work performed, no integral,

just conservation of momentum!

In reversed time order the above process is known as perfectly inelastic collision and is thoroughly discussed in the
book "Die Relativitdtstheorie Einsteins" published by Max Born in 1920 (still available by Springer 1964 and later).



20. Deriving the Lorentz-Transformations

Let the inertial frames of "Red" and "Black"” move against each other with relative speed v . Let the coordinate frames
be oriented as usual, with the x-axes along the same straight line and the y-axes and z-axes being parallel. Black labels
events in his frame S with coordinates (t,x,y,z) , Red does the same in his system S' using coordinates (t',x',y’z') . How
can we calculate the coordinates of a specific event in frame S if we know its coordinates in S' ?

Following (14.2) there is no 'transverse contraction’, and so we have

r

y=y und z =12z (20.1)

To find the transformations of the t'- and x’- values we need an additional agreement: Both Red and Black reset their
master clocks positioned at (0,0,0) at the very moment their coordinate frames coincide. Afterwards, Red and Black
synchronised all the other clocks in their own frame with that master clock. Both preconditions are necessary, because
it does not make sense to compare measured coordinates of a single event. We can only compare intervals of time and
intervals of space. For transforming time- and space-coordinates we need an event of reference or a common origin-
event. Later events are labelled by their distance (in time and space) to that event of reference.

All of that given, let Red ascribe the labels (t',x") to a specific event. For Black, the Red clock positioned at x' is
desynchronised against Red's masterclock in Red's origin. According to (15.1) the Red master clock showed

when that event occurred. But, like all clocks in Red's frame, that master clock runs slow as seen by Black. Therefore
Black calculates the time his clocks showed when that event happened by

¢+ X 2v
t = —CZ (20.2)
v
1-=

What is Black's calculation of the position x of that event in his frame ? The position of Red's origin is given by
O,eq = V- t . For Black, Red's measurement of the distance x’ of that event from is influenced by Lorentz contraction.
So Black calculates

x' vt x x'+v-t

vz v? v2 v?
\/1'?2 \/1'72 \/1'?2 1-=

Time and space coordinates cannot be separated any longer.

For the reverse transformations we just have to replace v by —v, the roles of Red and Black are completely
symmetric.

Henri Poincaré has named this group of coordinate transformations 'Lorentz-Transformations'. Hendrik Antoon Lorentz
introduced them shortly before 1900 to handle the contradictions arising from a constant speed of light and a resting
ether system. Poincaré further showed that these transformations constitute a group in the sense of mathematical
group theory.



Let us write down the Lorentz-transformations for both directions:

,  x-v xX-v
t+— t ——
t = C2 t’= C2
v v
l_ﬁ 1_F
x +v-t , x —v-t
x = x' =
v2 v2
1—c—2 1_C_2
y =y y =y
z=17 z =1z (20.4)

We will need these transformations in the next section to calculate differential terms like dx' / dt or dt / dt'.

Newton's Absolute Time requests t = t’, together with his Absolute Space we further have x = x'+ v -t' and
x'=x —wv-t .These are the well known Galilei transformations. They follow from the Lorentz transformations in the
limit of ¢ — oo . The mere existence of a limiting speed is not compatible with Newton's Absolute Time and Absolute
Space, it forces the developement of STR !

Let us note these transformations by using the abbreviations S, and y, as defined in (6.2) and (6.3) :

x' x
t=n-<t’+ﬂv-?> t’=y,,-(t—[},,-z)
x =y, (X + By-c-t') x' =y, (x = By-c-t)
y=y y =y
z =1z zZ =1z (20.5)

Multiplying the equations for t and t’ by ¢ we get equations for the new variables ¢ -t and ¢ - t’. These are formally
identical to those for the variables x and x' ! The same effect has the choice of units for time and space measurement
so that the speed of light becomes 1.

The full symmetry group of STR results when you add the rotations of space to the Lorentz transformations. The
resulting group is called the Poincaré group. Poincaré also proved that group to be the symmetry group of Maxwell's
theory.

Lorentz transformations handle only coordinate frames in special orientation to each other (the x-axes coinciding, the
y- and z-axes being parallel and relative speed v running along the x-axes). This special situation is frequently called a
'Lorentz boost'. But is this situation relly so special ? We are free to choose our coordinate frames and why should we
not choose one which makes our calculations as simple as possible ?



21. The Addition of Arbitrary Velocities

Let us derive the formulas for the transformation of arbitrary velocities from the Lorentz transformations.

Let the inertial frames of Red and Black be oriented as usual. Red moves with relative speed v along the x-axis of

Black. In Red's system some object moves with velocity u’ in arbitrary direction. What is the velocity u of that object
in Black's frame ?

We use the notations

dx' dy' dz'

, L, dx dy dz
v=(v,0,0) , u = (uy,u, ,u) = TP TRy T and  u = (Uy,uUy,uU) = ( )

dt 'dt ’dt

We calculate the components of u by using differential terms calculated from the formulas (20.5) of the last section :

X dx' dt’ , v
dx dx dt' gp y-(dt,+ﬂ-c-ﬁ> Uy + el u, + v (21.1)
ux = — T e— wm— T ee— 7 7 = — 7 .
dt dt’ dt dt dt 1 dx vi1 -, V- Uy
v y'(FJ“ﬂ'E'dt’) ek 14
This is formula (2.1) again!
In a similar way we calculate the terms for u, and u,:
, Y dy’ : ,
w2 W _ &y At ar dt’ - Uy - Yy (21.2)
Y odt 4t dt @ dt dt’ 1 dx'\ v 1 N\ v-u, '
w vlarecw) vireew) ()
) u,’
and in the same manner U, = ... ... = —————————— (21.3)
(1+5)
Y c2

The same formulas enable us to calculate u' from v and u if v isreplaced by — v.

Now let us suppose the z-component of u’ to be zero. Hence the z-component of u is zero, too. This is no limitation
of generality: By rotation of the frames S and S' around the x-axis you can always arrange the x-y-plane to fall
together with the plane defined by v and u’.

Let us denote by a' the angle between u’ and v . With u,” = 0 by arrangement we have

!
r uy
tan(a’) = 7 (21.4)

X

We calculate the angle a between u and v using (21.1) and (21.2) :



u r

y

v, , v2

uy V'(l‘l‘ sz> Uy - J1-2z
tan(a) = — = 7 = - 21.
@) Uy u, + v u, + v (21.5)

v-ou,
(1+ sz)

A positive velocity v implies the numerator decreased and the denominator increased. In that case we find
tan(a) < tan(a').

Einstein started with
!

2 2 u
u? = (u,)? + (uy) , uw? o= (u)? + (uy’) and tan(a) = uL’
X
and found "by a simple calculation"
2 12 / , vou'-sina'\
w2 +u2+2-v-u-cosa) — B E—
u = 7 7 (216)
147 uxczcos a

Einstein writes: "Es ist bemerkenswert, dass v und u’ in symmetrischer Weise in den Ausdruck fur die resultierende

Geschwindigkeit eingehen. Hat auch u’ die Richtung der x-Achse so erhalten wir ..." ... formula (2.1) again. Then
we have cos(a’) =1 and sin(a’) =0.

Indeed, using (21.1) and (21.2) Einstein's "simple calculation" can be done without difficulties.

Let us derive formula (17.1) again in a more sophisticated way. For the transverse velocity u’ = (0,u,",0) we have
according to (21.2)

(17.1) = (21.7)




22. Aberration

The formulas of the last section hold for any velocities u and u’, and they are still valid for u = ¢, the speed of light.
So let the light of a distant star arrive intersecting at angle @ with our x-axis. The components of that speed are

U, = —c-cosa , U, =c-sina and u, = 0

By our choice, a is an acute angle for stars with positive x-values. Following formulas (21.1) and (21.2) the velocity of
the light of that star has for Red the components

, —c-cosa — v —c-cosa — v
Uy = 1+—v-(—2-cosa= 1+v-ccosa
, c-sina c-sina
v y- (1T Cgeosa) T (14 RS

Of course, (u,")® + (u,)* = c? holds for these components, too.

For Red in S', the light from this star builds an acute angle a’ to the x'-axis with

c-sina
V- CcoSs A
. , u,’ & (1 + T) sina sina
ana = = = =
—uy' c-cosa+ v y.(cosa + 2) y-(cosa + B) (22.1)
V- CoS c
(1+=2)
c
Einstein preferred in his publication another formula :
: L0
cosa = U _ e - _cosat B (22.2)
c 142 cosa 1+ B-cosa '

Cc

Einstein comments: "Diese Gleichung driickt das Aberrationsgesetz in seiner allgemeinsten Form aus." Because he uses
angle ¢ = 180° — a instead of a his cosine values have the opposite signs. In the special case of @ = 90° we have
cos x' =B =v/c.Forthe difference ' to 90° degree we have siné§' = cosa’' = v/c.

Until 1905 astronomers used the 'wrong' formula tan §’ = v/c resulting from the 'old' way to add velocities. However
for small angles the difference between those formulas is far less than what can be observed.

Using the goniometric identity

the relation between a and a’ can be expressed by a beautyful symmetric formula. With (21.1) and (21.2) we find

u,’ sina
tana_’z sina” 7 y-(A+B-cosa) _ sina _
2 l4cosa’ | _w' 4, cosatf y-(I+B -cosa+cosa + B)
c 1+ -cosa
sina 1 sina \/1——[5’2 a

- y-(1+p)-(1+cosa) =)/-(1+,8)'1+cosa - (1+ﬁ)-tan5 =



= tan = = tan = = tan —
1+8-y1+8 2 1+8 2 ctv 2
So we get
a' 1-p8 a c—v a
tan — = |—— -tan - = -tan — (22.3)
2 1+ 2 c+v 2

Astronomer "Red", heading towards the star with velocity v observes a smaller angle a’ than his fellow "Black" who
sits at rest relative to the star (or has a minor relative velocity to it).

'aberrare' means to err or to deviate. A legend has it that James Bradley became aware of that effect in 1727 while
riding in a carriage under the English rain. He observed the rain falling more and more in front the faster the carriage
drove. By a finite value of the speed of light, he realized, the same effect should show up.

The speed of earth orbiting the sun is about 30 km/s . If the position of a star is perpendicular to earth's velocity, that is
a =90°, the calculation gives a value of aberration of about 20 arc seconds :

a' c—v 90° 300000 — 30
2 ctv 2 300000 + 30

f_y. %y t 3007000 — 30 89° 59’ 39.4"
* Tery T eraretany 1300000 +30) :

The following figures (adapted for this paper) are taken from the book "Spezielle Relativitdtstheorie fiir
Studienanfanger" by Jirgen Freund ( vdf Hochschulverlag Zirich 2004 ). On the left it shows an isotropic radiation
falling radially on system S. The right figure shows the same radiation as observed by someone moving to the right with
speed v = 0.9 - c. In the fast system S' the radiation falls in with greater concentration from ahead, as the rain drops
do for Bradley's carriage example:

For Red in system S', the radiation is not only concentrated in the forward direction, it is also more intense due to
Doppler shift in that direction. Instead of visible light you might be hit by UV-radiation or by x-rays ! And the world
'behind' disappears in darkness ...

Longitudinal and transversal Doppler shift were treated in the first section. For the sake of completeness we will study
the general case in the next section.



23. Doppler Shift: The Universal Formula

Let a sender S move with velocity v in an arbitrary direction relative to the receiver E. The sender S is emitting
radiation of frequency fs as measured by himself.

E will receive that radiation at (in this case reduced) frequency f for two reasons:

a) Time dilation slows down the oscillator frequency of the sender by the well known root expression (as seen by
the receiver). This effect does not depend on the direction of relative movement.

b) The increasing distance to the sender stretches the wave lengths of the radiation according to longitudinal
Doppler shift. The amount of this effect depends only on the radial velocity v,,q = v -cos ¢ .

In the general case we can do the same calculation as for (1.4) if we insert v,.,4 for v at the proper position:

fo=for——— )= fs-

C+ Vygq c+v-cose

or

JEo 1

'c+v-cos<p - fs'y-(1+ﬁ'-cos<p)

fe = fs (23.1)

Doing the same calculation with angle 8 = 180° — ¢ we get a minus sign in the denominator.
What about the special cases ?

e If ¢ equals zero sender S moves straight away from receiver E along the line ES . Then we have v,y = v
and cos ¢ = 1 and we repeat the calculation of longitudinal Doppler shift leading to (1.4).

e For¢@ = 90° the sender moves at right angle to the line of sight. Then we have v,,4 = 0 and cos ¢ =0
and we get the formula for transverse Doppler shift according to (1.6) or (17.2).



24. Four-Vectors, Three-Vectors and Newtons Second Law

A powerful tool for doing calculations in STR is provided through the use of four-vectors. Time coordinate and the three
spatial coordinates of events are combined to one vector with four components:

X =(c-t,x,y,z)=(c-t,x)

Time is multiplied by ¢ in order to have the same units for all components. X gives us a position in 4-space, X is the
four-vector of position. Deriving X by time t is not a useful idea because time differs from one inertial frame to the
other. The only distinguished time is the time in the rest frame of the moving object, i.e., the so called proper time T .
Four-velocity V is therefore defined by

N N N SO .
=5 &) =& =y @) =y-(c, V)

Multiplying V' by the rest mass m, of the moving body we get the four-momentum

_ _ - _ EtOt -
P—mO'V—y'mO'(C; U)— ) (24.1)
The last equation is based on (4.2) and (5.4). So, P is the STR momentum three-vector !
Further, four-force F is defined by
F—d(P)—d(P) dt_ d(P)— 1 dE dp _ 1 5 . - (24.2)
=P =P gEr W =g g = ) '

where f denotes the conventional 3d force vector.

We are not going to work with four-vectors here. Our aim is to show which relations of three-vectors remain valid even
in STR. The spatial part of (24.2) shows that Newton's second axiom of mechanics survives, seemingly unchanged:

-~ dp
_ 243
f dt ( )

(24.3) needs no proof but gives a definition of force f, as it did before in Newton's theory.The adaptation to STR is
hidden in the definition of STR momentum.

The temporal part of equation (24.2) shows that the equation of power (i.e. the rate of change of energy) remains
completely unchanged:

dE . ., . di U - 7 ras
== or = f-az (24.4)

The right side of (24.4) is the basic definition of energy as performed work or the ability to perform work.

In section 5 we combined (24.3) and (24.4) to calculate the relativistic expression of kinetic energy, integrating

. dp dp dv
dE=F % -dt =L .5 .0 =2

_dp
dt T dv  dt

U - dt = —
v dv

-V -dv (24.5)

The result (5.2) of that calculation became independently confirmed in section 18 .



Let us go one step further: Four-acceleration A is defined by
A= d V)
T odt
By definition, the formula F = m - A is correctin STR :

F—d(P)—d( V) = d(V)— A
T dt T dt Mo = Mo dt = Mo

The representation of the four-vector A by three-vectors is rather complicated in general. However, the calculation is
straightforward, resulting in

d - o - -
A=E(V)= y*-c?-v-a-(c, v) + y*-(0, a) (24.6)

With F =m, A4, (24.2) and (24.6) we get

1 > - 4 2 N
v f B f) = m-ytc b

Qu

-(c, ) + mg-y?-(0, d) (24.7)

Taking a closer look at (24.7) we notice that three-force f is not necessarily parallel to three-acceleration @ in STR !

The first summand on the right side of (24.6) and (24.7) disappears if acceleration and velocity are perpendicular to
each other (this is always the case if Lorentz-force is at work). Then (24.7) reduces to

-
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and hence f =7y -mg-d. So,inthe early days of STR, people were speaking of 'transversal mass' y - m, .

If ¥ and d are parallel to each other we get from (24.2) and (5.1)

. dp _dp dv
f_dt_dv dt
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The same formula results, of course, by a direct calculation starting at (24.7). And here we have the origin of the
outdated notion 'longitudinal mass' for the term y3 -m, .

In modern text books on STR the term 'mass' exclusively denotes rest mass m, . | take the liberty to carry on using the
term 'dynamic mass' for y - m,, . After all it is a conserved quantity, proportional to total energy and hence to the
inertia of the object. On the other hand, rest mass m, is a relativistic invariant, it has the same value in all frames of
reference. But it is not a conserved quantity.

The terms 'longitudinal mass' and 'transversal mass' however are definitively obsolete.



25. Some Remarks on the Foundations of STR

STR is the only possible way to unite the principle of relativity and Maxwell's theory of electromagnetism. In Maxwell's
theory electromagnetic waves are spreading through empty space with universal speed c in all frames of reference,
independent of any movement of the observer or the source - something completely incompatible with Newton's
concepts of Absolute Time and Absolute Space. Lorentz tried to reconcile Maxwell's and Newton's theories introducing
a 'length contraction' and a 'local time'. Till 1900 he developed a great part of the mathematical tools for the yet to
come STR.

In spring 1905 Einstein recognized Newton's Absolute Time to be the core problem. Well aware of the experimental
facts, Einstein turned the problem into a basic principle or an axiom. The former problem became the foundation of a
new theory. His analysis of the simultaneity of events detected the basic phenomena time dilation, length contraction
and desynchronisation. In a couple of weeks he and his wife wrote down the seminal paper on STR published in June
1905. In the same way Einstein later resolved the problematic equivalence of inertial and gravitational mass. There is
no reason for this experimental fact in classical physics, already Newton wondered about it. Einstein interprets the
problem as a fundamental fact, and based on this new axiom he develops (on a long and laborious path) his General
Theory of Relativity.

STR is based on the axiom
Al The vacuum speed of light is a universal constant, independent of the state of movement of the source.

Classical physics knows four quantities conserved in all processes: mass, energy, momentum and electric charge. STR
affects three of these conservation theorems; only conservation of total electric charge is unchanged.

In STR, conservation of mass and conservation of energy fall into one; 'conservation of dynamic mass' and 'conservation
of total energy' are essentially the same. Conservation of total momentum is still valid, but 'STR momentum' differs
slightly from momentum in Newton's theory.

Section 18 shows, without using any of the conservation theorems, how STR momentum necessarily has to be defined.
Section 19 shows how conservation of dynamic mass follows from conservation of momentum.

Section 4 derives the definitions of dynamic mass and STR momentum just by assuming the existence of a velocity-
dependence of mass that makes conservation of mass and conservation of momentum true.

As a matter of fact all three of Newton's fundamental laws still hold in STR ! The first law deals with a special case

of the second one and so needs no separate discussion. The second law says, in Newton's original formulation,

F = dp/dt . This is still true, with some refinement in the definition of momentum ! And his third law ('actio = reactio’)
is a deep insight, in a realm high above the details of any specific theory.

If the equation E = p - ¢ for some amount of radiation is taken as given then it is quite easy to derive the equivalence
of mass and energy from conservation of momentum (sections 10 to 12) or from conservation of energy (section 13).
We may use then a weaker version of axiom A1l to derive the STR, the premise of the independence of light speed from
movement of the source can be omitted. Al is equivalent to A2 & A3, if we define

A2 The vacuum speed of light emitted by a source at rest is an universal constant.

A3 Energy and momentum of electromagnetic radiation are linked by the equation E =p-c .



